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Foreword 

 

The	
   areas	
   of	
   AI	
   planning	
   and	
   scheduling	
   have	
   seen	
   important	
   advances	
   thanks	
   to	
   the	
  
application	
  of	
  constraint	
  satisfaction	
  models	
  and	
  techniques.	
  Especially	
  solutions	
  to	
  many	
  real-­‐
world	
   problems	
   need	
   to	
   integrate	
   plan	
   synthesis	
   capabilities	
  with	
   resource	
   allocation,	
  which	
  
can	
  be	
  efficiently	
  managed	
  by	
  using	
  constraint	
  satisfaction	
  techniques.	
  

The	
  workshop	
  aims	
  at	
  providing	
  a	
  forum	
  for	
  researchers	
  in	
  the	
  field	
  of	
  Artificial	
  Intelligence	
  to	
  
discuss	
   novel	
   issues	
   on	
   planning,	
   scheduling,	
   constraint	
   programming/constraint	
   satisfaction	
  
problems	
   (CSPs)	
   and	
  many	
   other	
   common	
   areas	
   that	
   exist	
   among	
   them.	
   On	
   the	
   whole,	
   the	
  
workshop	
   mainly	
   focuses	
   on	
   managing	
   complex	
   problems	
   where	
   planning,	
   scheduling	
   and	
  
constraint	
   satisfaction	
   must	
   be	
   combined	
   and/or	
   interrelated,	
   which	
   entails	
   an	
   enormous	
  
potential	
  for	
  practical	
  applications	
  and	
  future	
  research.	
  Formulations	
  of	
  P&S	
  problems	
  as	
  CSPs,	
  
resource	
  and	
  temporal	
  global	
  constraints,	
  and	
  inference	
  techniques	
  are	
  of	
  particular	
  interest	
  of	
  
COPLAS.	
  

This	
  workshop	
   has	
   been	
   hold	
   form	
   2006	
   in	
   the	
   context	
   of	
   ICAPS	
   and	
   CP	
   conferences,	
  which	
  
provided	
   a	
   broader	
   audience	
   and	
   gave	
   the	
   participants	
   of	
   both	
   events	
   the	
   opportunity	
   to	
  
exchange	
   ideas	
   and	
   approaches	
   that	
   lead	
   to	
   a	
   valuable	
   and	
   fruitful	
   discussion,	
   and	
   inspired	
  
forthcoming	
  research.	
  COPLAS	
  is	
  ranked	
  as	
  CORE	
  B	
  in	
  ERA	
  Conference	
  Ranking	
  and	
  it	
  is	
  covered	
  
in	
  selected	
  Elsevier	
  database	
  products.	
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The RANTANPLAN Planner: System Description

Miquel Bofill and Joan Espasa and Mateu Villaret
Departament d’Informàtica, Matemàtica Aplicada i Estadı́stica

Universitat de Girona, Spain

Abstract
RANTANPLAN is a numeric planning solver that takes advan-
tage of recent advances in SMT. It extends reduction to SAT
approaches with an easy and efficient handling of numeric
fluents using background theories. In this paper we describe
the design choices and features of RANTANPLAN, especially,
how numeric reasoning is integrated in the system. We also
provide experimental results showing that RANTANPLAN is
competitive with existing exact numeric planners.

Introduction
The problem of planning, in its most basic form, consists
in finding a sequence of actions that allow to reach a goal
state from a given initial state. Although initially consid-
ered a deduction problem, it was rapidly seen that it could
be addressed by looking at it as a satisfiability (model find-
ing) problem (Kautz and Selman 1992). Many (incomplete)
heuristic methods can be found in the literature to efficiently
deal with this problem, most of them oriented towards find-
ing models. Exact methods were ruled out at the beginning
due to their inefficiency. However, in (Kautz, McAllester,
and Selman 1996) it was shown that modern off-the-shelf
SAT solvers could be effectively used to solve planning
problems. In recent years, the power of SAT technology has
been leveraged to planning (Rintanen 2012), making reduc-
tion into SAT competitive with heuristic search methods.

Although a lot of work has been devoted to the encod-
ing of plans in propositional logic, only a few works can be
found in the literature on satisfiability based approaches to
planning in domains that require numeric reasoning. This
is probably due to the difficulty of efficiently handling at
the same time numeric constraints and propositional for-
mulas. Among the few works dealing with planning with
resources are (Hoffmann 2003; Kautz and Walser 1999;
Gerevini, Saetti, and Serina 2008; Hoffmann et al. 2007).
There have also been some works using constraint and
logic programming (Dovier, Formisano, and Pontelli 2010;
Barták and Toropila 2010). However, the advances in sat-
isfiability modulo theories (SMT) (Barrett et al. 2009) in
the last years make worth considering this alternative. With
RANTANPLAN we demonstrate that with SMT one can ele-
gantly handle numeric reasoning inside any PDDL domain,
thanks to the integration of various background theories with
a SAT solver.

As the number of variables, and hence the search space,
rapidly grows with the number of time steps considered, a
key idea to improve the performance of SAT-based planners
is to consider the possibility of executing several actions
at the same time, i.e., the notion of parallel plans. Paral-
lel plans increase the efficiency not only because they allow
to reduce the time horizon, but also because it is unneces-
sary to consider all total orderings of the actions that are
performed in parallel. Nevertheless, in SAT-based planning,
parallel plans are not intended to represent true parallelism
in time, and it is usually required that a sequential plan can
be built from a parallel plan in polynomial time. Two main
types of parallel plans are considered: ∀-step plans, and ∃-
step plans. In ∀-step plans, any ordering of parallel actions
must result in a valid sequential plan. In ∃-step plans, there
must exist a total ordering of parallel actions resulting in a
valid sequential plan. We refer the reader to (Rintanen 2009;
Rintanen, Heljanko, and Niemelä 2006) for further details.
RANTANPLAN supports ∀ and ∃-step plans, using various
different encodings.

To ensure that a parallel plan is sound, it is necessary that
all actions proposed to be executed at the same time do not
interfere. Different notions of interference have been de-
fined, some more restrictive, some more relaxed. But, as
far as we know, for efficiency reasons, potential interfer-
ence between action is always determined statically, i.e.,
independently of any concrete state, hence in a fairly re-
strictive way. Moreover, very few works deal with the no-
tion of incompatibility of actions in planning with resources,
most of them with rather syntactic or limited semantic ap-
proaches (Kautz and Walser 1999; Fox and Long 2003;
Gerevini, Saetti, and Serina 2008) RANTANPLAN incorpo-
rates a novel method for determining interference between
actions at compile time, using an SMT solver as an oracle.

Summing up, RANTANPLAN is a numeric planner based
on planning as satisfiability, which translates PDDL prob-
lems into SMT formulas. It supports various types of par-
allelism, using a novel notion of interference. Experimental
results show that it is competitive with other exact numeric
planners and strictly better in non-trivial numeric domains.

Related Work
The pioneering work of LPSAT (Wolfman and Weld 1999)
on planning with resources can indeed be considered one of

Proceedings of the Workshop on Constraint Satisfaction Techniques for Planning and Scheduling Problems (COPLAS-15)

1



the precursors of SMT, as the basic ideas of SMT (Boolean
abstraction, interaction of a SAT solver with a theory solver,
etc.) were already present in it.

A comparison between SAT and SMT based encodings
for planning in numeric domains can be found in (Hoff-
mann et al. 2007). In the SAT approach, the possible values
of numeric state variables is approximated, by generating
a set of values Dt(v) for every numeric variable v, so that
every value that v can have after t time steps is contained
in Dt(v). These finite domains then serve as the basis for
a fully Boolean encoding, where atoms represent numeric
variables taking on particular values. With respect to SMT,
where numeric variables and expressions are first class citi-
zens, the authors argue that the expressivity of the SMT lan-
guage comes at the price of requiring much more complex
solvers than for SAT and, for this reason, their SAT-based
method is very efficient in domains with tightly constrained
resources, where the number of distinct values that a nu-
meric variable can take is small.

Other approaches, related to SMT to some amount as
well, have been developed more recently. In (Belouaer and
Maris 2012), a set of encoding rules is defined for spatio-
temporal planning, taking SMT as the target formalism. On
the other hand, in (Gregory et al. 2012) a modular frame-
work, inspired in the architecture of lazy SMT, is developed
for planning with resources. We compare with some of these
approaches in the experimental evaluation section.

Preliminaries
A numeric planning problem is defined as a tuple
〈V, P,A, I,G〉 where V is a set of numeric variables, P is a
set of propositions (or Boolean variables), A is a set of ac-
tions, I is the initial state andG is a formula over V ∪P that
any goal state must satisfy.

A state is a total assignment to the variables. Actions are
formalized as pairs 〈p, e〉, where p are the preconditions and
e the effects. More formally, p is a set of Boolean expres-
sions over V ∪ P , while e is a set of (conditional) effects
of the form f ⇒ d, where f is a Boolean expression over
V ∪P and d is a set of assignments. An assignment is a pair
〈v, exp〉, where v is a variable and exp is an expression of
the corresponding type. For example, increasing a variable
v by one is represented by the pair 〈v, v+1〉, indicating that
v + 1 is the value that v will hold in the next state. Uncon-
ditional effects are represented by setting f = true.

The active effects of an action a = 〈p, e〉 in a state s are
∪f⇒d∈e{d | s |= f}. An action a = 〈p, e〉 is executable in a
given state s if s |= p and the active effects of a in state s are
consistent, i.e., we do not have exp 6= exp′ for any variable
v ∈ V ∪ P and assignments 〈v, exp〉 and 〈v, exp′〉 in the
active effects.

The state resulting from executing action a in state s is
denoted by apply(a, s) = s′. The new state s′ is defined by
assigning new values to the variables according to the active
effects, and retaining the values of the variables that are not
assigned values by any of the active effects.

A sequential plan of length n for a given planning prob-
lem 〈V, P,A, I,G〉 is a sequence of actions a1; a2; . . . ; an
such that apply(an . . . apply(a2, apply(a1, I)) . . . ) |= G.

A parallel plan of length n can be defined similarly to a
sequential plan. Instead of having a sequence of actions, we
have a sequence of sets of actions σ1;σ2; . . . ;σn such that
order(σ1) ⊕ order(σ2) ⊕ · · · ⊕ order(σn) is a sequential
plan, where order(σi) is an ordering function which trans-
forms the set σi into a sequence of actions, and ⊕ denotes
the concatenation of sequences. Actions in the same set σi
are said to occur in parallel.

The notion of parallelism of a ∀-step plan is defined as
the possibility of ordering the actions of each set to any total
ordering, i.e., no two actions a, a′ in each σi are interfering
(e.g., executing a neither falsifies the precondition of a′ nor
changes any of its active effects, and vice versa).

The ∃-step semantics weakens the ∀-step requirements,
by only requiring the existence of some correct ordering of
the actions that results in a valid sequential plan.

In the planning as SAT approach, a planning problem is
solved by considering a sequence of formulas φ0, φ1, φ2,
. . . , where φi encodes the feasibility of a plan that allows
to reach a goal state from the initial state in i steps. The
solving procedure proceeds by testing the satisfiability of φ0,
φ1, φ2, and so on, until a satisfiable formula φn is found.
It is a matter of the encoding whether one or various (non
interfering) actions are executed at each step.

Framework
RANTANPLAN supports a fragment of PDDL which is close
to general numeric PDDL 2.1, excluding the temporal ex-
tensions and metric optimizations. In terms of requirements,
we consider typing, numeric and object fluents, equality as
built-in predicate, universally quantified and negative pre-
conditions, and conditional effects.

With respect to numeric effects, we consider
assign(x, exp), increase(x, exp) and decrease(x, exp),
where exp is any closed formula over linear integer (or real)
arithmetic. With respect to preconditions and conditions of
numeric effects, we assume that the restrictions imposed on
numeric fluents take the same form as exp.

System Architecture
The structure of the RANTANPLAN system is represented in
Figure 1. It receives a PDDL instance and domain and parses
it. A preprocessing step is then applied, where PDDL’s
forall constructs are expanded, static functors are iden-
tified, and precomputable substitutions and arithmetic oper-
ations are carried out.

To encode the formulas φ0, φ1, φ2, . . . , one of the two
encodings described in the following sections (QF LIA or
QF UFLIA) is carried out, transforming the PDDL prob-
lem to a pure SMT problem. Then the problem is iteratively
solved, using the chosen SMT Solver as a black box.

A key aspect of the planner is the detection of interfer-
ences between parallel actions at compile time, by means of
calls to a SMT Solver. In case the user demands a parallel
plan, a disabling graph is computed. By disabling graph we
refer to a directed graph, where nodes are the grounded ac-
tions from the planning problem and an edge exists from ac-
tion a to action a′ if the execution of a can affect a′ (forbid
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PDDL
Domain

PDDL
Instance

Parsing and
Preprocessing Encoding

Solving SMT Solver

Sol. Recovery Sol. Seri-
alization Plan

Interference detection

SAT check

Figure 1: Basic architecture and solving process of the
RANTANPLAN solver

its execution or change its active effects) (Rintanen, Hel-
janko, and Niemelä 2006). This graph is used, depending
on the notion of parallelism chosen, to encode the necessary
constraints restricting which actions can be carried out at the
same time step. In particular, the solver supports:
• A sequential encoding, achieved by using an at least one

and an at most one constraint on the possible actions.
• The ∀-step semantics, using the quadratic encoding

in (Rintanen, Heljanko, and Niemelä 2006)
• The ∃-step semantics, with two encodings. Using

the quadratic encoding in (Rintanen, Heljanko, and
Niemelä 2006), and a linear-size encoding based on a
fixed ordering of operators, also in (Rintanen, Heljanko,
and Niemelä 2006).
The system supports solving via API or plain text file us-

ing the Yices SMT solver v1.0.38 and the Z3 4.3.2 SMT
solver. Once a solution has been found, then it is finally
retrieved and serialized. In the following subsections, the
relevant aspects of the RANTANPLAN solver are explained
in more detail.

QF LIA Encoding
Numeric planning problems with linear integer arithmetic
expressions naturally fall into the QF LIA logic. In the
SMT-LIB standard (Barrett, Stump, and Tinelli 2010),
QF LIA stands for the logic of Quantifier-Free Boolean for-
mulas, with Linear Integer Arithmetic constraints. This
logic has a good compromise between expressivity and per-
formance, and is the natural choice for this problem.

We generalized Rintanen’s (Rintanen 2009) encoding of
planning as SAT to include numeric variables as follows.

For each time step, every ground instance of a PDDL
predicate and action is mapped to a Boolean variable, and
every ground instance of a PDDL function is mapped to an
integer variable. For instance, a predicate stating the posi-
tion of an aircraft such as at(?a - aircraft, ?c -
city), with three cities c1, c2 and c3, and two planes p1
and p2, will result into six ground instances at(p1,c1),
. . . , at(p2,c3), that will be mapped to six Boolean vari-
ables at tp1 ,c1 , . . . , at tp2 ,c3 for each time step t. Follow-
ing the same example, being at(?o - aircraft) -
city an object fluent, the mapping would result into two
integer variables atp1 , atp2 with the domains being the pos-
sible cities c1, c2 and c3 (these are internally mapped into
three distinct integers). Note that thanks to the SMT lan-
guage, we can get a more compact encoding of states in the
presence of object fluents than using a plain SAT approach.
The Boolean variables resulting from actions will be used to
denote what action is executed at each time step, and with
which parameters. The Boolean and integer variables re-
sulting from grounding the predicates and functions, respec-
tively, will constitute the state variables. A superscript t is
used to differentiate the variables at each time step.

Given a formula φ, by φt we denote the same formula φ
where all integer variables x have been replaced by xt. For
the case of assignments, we define:

〈x, true〉t def
= xt

〈x, false〉t def
= ¬xt

〈x, k〉t def
= (xt = k)

〈x, x+ k〉t def
= (xt = xt−1 + k)

〈x, x− k〉t def
= (xt = xt−1 − k)

For each ground1 action a = 〈p, e〉, we have the following
constraints. First, its execution during time step t implies
that its precondition is met:

at → pt ∀a = 〈p, e〉 ∈ A (1)

Also, each of its conditional effects will hold at the next
time step if the corresponding condition holds:

(at ∧ f t)→ dt+1 ∀a = 〈p, e〉 ∈ A,∀f ⇒ d ∈ e (2)

Here we view sets d of literals as conjunctions of liter-
als. Recall also that unconditional effects will have true as
condition f .

Second, we need explanatory axioms to express the rea-
son of a change in state variables. For each variable x in
V ∪ P :

xt 6= xt+1 →
∨

a=〈p,e〉∈A

(
at ∧ (EPCx(a))

t
)

(3)

1By a ground action 〈p, e〉 we refer to an action where p and e
are built on the state variables that result from grounding a PDDL
model, as explained above.
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where, given an action a = 〈p, e〉 and a variable x,

EPCx(a) =
∨

f⇒d∈e

{f | d contains an assignment for x}

that is, the effect precondition for the modification of x in
action a, where the empty disjunction is defined as false.
For Boolean variables, the expression xt 6= xt+1 can be
written as (xt ∧ ¬xt+1) ∨ (¬xt ∧ xt+1).

Interference Between Actions
As said in the introduction, a key concept in parallel plans
is the notion of interference between actions. This issue has
been carefully considered by Rintanen et al. (Rintanen, Hel-
janko, and Niemelä 2006) in the setting of planning as SAT.
Given a disabling graph, where an edge exists from action a
to action a′ if the execution of a can affect a′, we know for
example that the simultaneous execution of all actions per-
taining to a strongly connected component is not possible, as
given all possible orderings of actions, all of them contain a
cycle (and thus they cannot be serialized).

Note that acyclicity is a sufficient but not necessary condi-
tion for a set of actions to be executable in some order, since
disabling graphs are computed independently of any state.

In (Rintanen 2009), an action a1 is defined to affect an-
other action a2 if a1 may prevent the execution of a2 or
change its active effects, and two actions a1 and a2 are con-
sidered to interfere if a1 affects a2 or a2 affects a1. In ∀-step
plans, where all possible serializations must be valid, no two
interfering actions can occur in parallel. In the more relaxed
notion of parallelism of ∃-step plans, where it is only re-
quired that no action affects a later one in some total order-
ing, often much more parallelism is allowed in practice. For
efficiency reasons, typically syntactic (rather than semantic)
restrictions are imposed on parallel actions. For example,
in (Rintanen 2009), where only Boolean variables are con-
sidered, a1 = 〈p1, e1〉 is determined to affect a2 = 〈p2, e2〉
if, for some variable a,

1. a is set to true in d1 for some f1 ⇒ d1 ∈ e1, and a occurs
negatively in p2 or occurs in f2 for some f2 ⇒ d2 ∈ e2,
or

2. a is set to false in d1 for some f1 ⇒ d1 ∈ e1, and a occurs
positively in p2 or occurs in f2 for some f2 ⇒ d2 ∈ e2.

That is, a1 affects a2 if a1 can impede the execution of a2, or
change its effects. Note that this is not a symmetric relation.

This is a fully syntactic check which can be used to estab-
lish sufficient although not necessary conditions for finding
serializable parallel plans. We can observe that interference
between effects is not considered. This is because, in the
case two actions have contradictory effects, any formula en-
coding a plan with those two actions running in parallel will
become unsatisfiable.

The previous approach could be naively generalized to the
case of numeric variables as follows: an action a1 = 〈p1, e1〉
affects an action a2 = 〈p2, e2〉 if, for some variable x, x is
modified in d1 for some f1 ⇒ d1 ∈ e1, and x occurs in p2
or occurs in f2 for some f2 ⇒ d2 ∈ e2.

Performing only syntactic checks like the previous seems
too much restrictive for numeric variables, even in the case
that we determine interference at compile time, i.e., indepen-
dently of any concrete state. For this reason, we propose a
new idea, currently submitted for review (Bofill, Espasa, and
Villaret 2015), which is to use SMT technology to perform
semantic checks of interference at compile time, in order to
increase the amount of parallelization of numeric plans.

Our method is independent of any test suite and does not
require any special purpose algorithm, as it relies on encod-
ing the possible interference situations between pairs of ac-
tions as SMT formulas and checking their satisfiability, by
calling an SMT solver, at compile time. For example, an
important difference with the purely syntactic definition of
interference of (Rintanen 2009) is that we include the pre-
conditions of the actions in the semantic checks. More pre-
cisely, two actions can occur in parallel only if their pre-
conditions can be satisfied simultaneously, regardless of the
variables they contain. This way, we are able to avoid many
“false positive” interference relationships.

All in all, we obtain a much more fine-grained notion of
interference, that we expect will help to increase the paral-
lelization of actions. Note that the interference relationships
determined semantically will always be a subset of the inter-
ference relationships determined syntactically. Interestingly,
we will be using an SMT solver both at compile time, as an
oracle to predict interference relationships, and at solving
time.

For efficiency reasons, to perform the interference checks
we do not consider grounded actions, but the original actions
in the PDDL model. Since now actions are not instantiated,
we need to unify the parameters of the same type in the ac-
tions for which we check interference.

Imagine we have two actions, say move(?d - ship
?a ?b - location) and dock(?e - ship ?c -
location). We will be interested to know, for example,
if the actions interfere in the case that ?d and ?e are the
same ship. Or in the case that locations ?a and ?c are the
same, etc. In conclusion, we must consider all different pos-
sible equality and disequality relationships between param-
eters of the same type, to find out in which cases one action
can interfere with another action.

To accomplish this task we group all the parameters of
the two considered actions by its most general declared type.
Following the previous example, in total we have three pa-
rameters a, b and c of the type location and two param-
eters d and e of the type ship. Therefore, we need to check
interference in the following situations:
a = b = c, d = e
a = b, b != c, d = e
a = c, b != c, d = e
a != b, b = c, d = e
...

Internally the parameters are substituted by equal or dif-
ferent integers according to the generated constraints, and
the formulas encoding incompatibility are checked for sat-
isfiability. These consistency checks can be done in a rea-
sonable time with an SMT solver, and the amount of par-
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allelism achieved is significantly higher than with syntac-
tic approaches. To illustrate the situations where this notion
of interference is especially accurate, consider the following
example. The problem consists in transporting people be-
tween cities using planes. Each plane has a limited number
of seats and a given fuel capacity. The actions on this do-
main are fly, board, debark and refuel. We focus
on the fly and board actions. A plane can only fly if it
is transporting somebody and it has enough fuel to reach its
destination, and boarding is limited by seat availability:

(:action fly
:parameters (?a - aircraft ?c1 ?c2 - city)

:precondition (and (at ?a ?c1)
(> (onboard ?a) 0)
(>= (fuel ?a)

(distance ?c1 ?c2)))

:effect (and (not (at ?a ?c1))
(at ?a ?c2)
(decrease (fuel ?a)

(distance ?c1 ?c2))))

(:action board
:parameters (?p - person

?a - aircraft
?c - city)

:precondition (and (at ?p ?c)
(at ?a ?c)
(> (seats ?a) (onboard ?a)))

:effect (and (not (at ?p ?c))
(in ?p ?a)
(increase (onboard ?a) 1)))

The syntactic notion of interference would determine in-
terference between fly and board, since board modi-
fies the onboard function (number of passengers) and fly
checks the value of this function in its precondition. On
the contrary, with the semantic technique, we would find
out that there is no interference at all, since it is impos-
sible that the preconditions of board and fly were true
at the same time, and after executing board the precon-
dition of fly became false. Note that the precondition
of fly requires (> (onboard ?a) 0) and the effect
(increase (onboard ?a) 1) of board can never
falsify (> (onboard ?a) 0).

Sequential Plans

The sequential encoding allows exactly one action per time
step. This is achieved by imposing an exactly one con-
straint on the action variables at each time step. We tested
some well-known encodings, and we settled with the bi-
nary encoding (Frisch and Giannaros 2010) as it gave us
the best performance. This encoding introduces new vari-
ables B1, . . . , Bdlog2 ne, where n = |A|, and associates each
variable ati with a unique bit string si ∈ {0, 1}dlog2 ne. The
encoding is:

n∧
i=1

dlog2 ne∧
j=1

¬ati ∨ �(i, j) (4)

n∨
i=1

ati (5)

where �(i, j) is Bj if the jth bit of the bit string of si is
1, and ¬Bj otherwise. The binary encoding of the at most
one constraint (4), introduces dlog2 ne new variables and
ndlog2 ne binary clauses. Together with the at least one
constraint (5), we obtain the desired exactly one constraint.

Parallel Plans
Encodings for two types of parallel plan semantics have been
implemented in RANTANPLAN: ∀-step plans, and ∃-step
plans.

∀-step Plans The notion of parallelism of a ∀-step plan
is defined as the possibility of ordering the actions of each
time step to any total order. Therefore, at each time step twe
simply add a mutex between any pair of interfering actions
ai and aj :

¬(ati ∧ atj) if ai affects aj or aj affects ai (6)

∃-step Plans In ∃-step plans, there must exist at least a
total ordering of parallel actions resulting in a valid sequen-
tial plan. RANTANPLAN implements a quadratic encoding
for this purpose. It takes as ingredient an arbitrary total or-
dering < on the actions, and the parallel execution of two
actions ai and aj such that ai affects aj is forbidden only if
i < j:

¬(ati ∧ atj) if ai affects aj and i < j (7)

The linear-size encoding described in (Rintanen, Hel-
janko, and Niemelä 2006), is also supported.

Since ∃-step plans are less restrictive than ∀-step plans, as
they do not require that all orderings of parallel actions re-
sult in valid sequential plan, they normally allow more par-
allelism.

Plan Serialization
To obtain a sequential plan from the solution, for each time
step with more than one action, a subgraph of the disabling
graph is extracted, containing only the actions at that time
step. A valid order between actions can then be computed.

Since in all implemented parallel encodings acyclicity is
guaranteed between the executed actions, a reversed topo-
logical order of the subgraph is always as a valid order.

Extension: QF UFLIA Encoding
As the previously introduced QF LIA encodings grows
considerably with the time horizon, to the point of get-
ting unmanageable instances, we have started to develop
a more compact encoding, using the theory of uninter-
preted functions to express predicates, functions and actions.
This encoding is reminiscent of the lifted causal encodings
in (Kautz, McAllester, and Selman 1996).

In the SMT-LIB standard (Barrett, Stump, and Tinelli
2010), QF UFLIA stands for the logic of Quantifier-Free
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Boolean formulas, with Linear Integer Arithmetic con-
straints and Uninterpreted Functions. Uninterpreted func-
tions have no other property than its name and arity, and are
only subject to the following axiom: x1 = x′1 ∧ · · · ∧ xn =
x′n → f(x1, . . . , xn) = f(x′1, . . . , x

′
n).

The encoding goes as follows. Every defined object in the
problem is mapped to an integer. For each function, predi-
cate and action, an uninterpreted function is declared, with
each parameter being declared as an integer. Also, a new
integer parameter is added to each of them, representing a
time step. Uninterpreted functions corresponding to predi-
cates and actions return a Boolean value, whilst the ones for
functions return an integer value. Moreover, for each action,
parameter and time step, a new integer variable is defined,
representing the value of that parameter in the action if exe-
cuted at the corresponding time step.

For example, the Boolean function ϕa(x
t
a,1, . . . , x

t
a,n, t)

determines whether action a with parameters xta,1, . . . , x
t
a,n

is executed at time step t. The parameter t is a constant,
which is shared between all uninterpreted functions for the
actions, predicates and functions in the same time step. Con-
trarily, xta,1, . . . , x

t
a,n are variables with finite domains, and

constraints are added to restrict their possible values. Re-
garding predicates and functions, no new variables are de-
fined, since their arguments will be either constants or vari-
ables occurring in some action.

We remark that, in this new setting, a state is defined
by the value of the uninterpreted functions corresponding
to predicates and functions, for a given value of their argu-
ments. Equations (1) and (2) of the QF LIA encoding are
generalized here as:

ϕa(x
t
a,1, . . . , x

t
a,n, t)→ pt ∀a = 〈p, e〉 ∈ A (8)

ϕa(x
t
a,1, . . . , x

t
a,n, t) ∧ f t → dt+1

∀a = 〈p, e〉 ∈ A,∀〈f, d〉 ∈ e (9)

Note that this results in a much more compact encoding
than if we restrict to QF LIA, since here we are using vari-
ables as arguments of functions, and it is the SMT solver
who is in charge of guessing the concrete values of the pa-
rameters of the executed actions. The considered set of ac-
tions A is now parametrized, and hence similar to that of
PDDL, with actions like fly(x , y , z ), instead of grounded
actions like flyp1 ,c1 ,c1 , flyp1 ,c1 ,c2 , etc. Equation (3) is gen-
eralized as:

ϕh(ch,1, . . . , ch,n, t) 6= ϕg(ch,1, . . . , ch,n, t+ 1)→∨
a∈touch(g)

(
ϕa(x

t
a,1, . . . , x

t
a,m, t)

∧
i ∈ 1..n, j ∈ 1..m

name(h, i) = name(a, j)

(xta,j = ch,i)
)

∀h ∈ H, ∀ch,1, . . . , ch,n ∈ S1 × · · · × Sn (10)

where H is the set of predicates and functions, touch(h)
is the set of actions that may modify h, Si is the domain of
the i-th argument of ϕh, and name(h, k) is the name in the
PDDL model of the k-th argument of the functor h. To help
the reader understand the formula, we provide an example.
Suppose we have the following simple PDDL problem:

• objects: A,B - truck, L1,L2,L3 - loc

• predicate: at(?t - truck, ?l - loc)

• actions:
travel(?t - truck, ?from - loc, ?to - loc)
refuel(?x - truck, ?where - loc)

• function: fuel(?t - truck) - number

where travel has (decrease (fuel ?t) 10)
among its effects, and refuel has (increase (fuel
?x) 20) as its only effect. Constraint (10) for the fuel
function would be encoded into SMT at time step 0 as fol-
lows:

(=> (distinct (fuel A 0) (fuel A 1))
(or (and (travel x1_0 x2_0 x3_0 0) (= x1_0 A))

(and (refuel x4_0 x5_0 0) (= x4_0 A))))

(=> (distinct (fuel B 0) (fuel B 1))
(or (and (travel x1_0 x2_0 x3_0 0) (= x1_0 B))

(and (refuel x4_0 x5_0 0) (= x4_0 B))))

That is, we are saying that if the fuel of truck A (or B) has
changed this should be because it has been the protagonist
of some action implying a modification in its fuel, namely
traveling or refueling.

Again, this is much more compact than its QF LIA coun-
terpart. With respect to the parallelism, for now this encod-
ing only supports the sequential plan semantics, as encoding
parallelism using this encoding is not straightforward. This
approach is currently under development, as we obtained en-
couraging preliminary experimental results (Bofill, Espasa,
and Villaret 2014).

Experimental Evaluation
In this section we report on experiments with RANTANPLAN
using Yices (Dutertre and De Moura 2006) v1.0.38 as back-
end solver. All experiments have been run on 8GB Intel R©

Xeon R© E3-1220v2 machines at 3.10 GHz.
The goal of the experiments is to evaluate if RANTAN-

PLAN is competitive with state of the art exact numeric plan-
ners, as well as showing the benefits of having a good notion
of interference.

For the sake of simplicity, only QF LIA ∃-step plans are
considered, using a quadratic encoding for expressing in-
compatibility of actions. We experimentally observed that
the solver behavior was more stable when using a quadratic
encoding than when using a linear encoding, probably be-
cause a linear encoding is more perturbable with the chosen
ordering of actions.

We consider four distinct domains: the numeric versions
of ZenoTravel and Depots, the real-life challenging Petro-
bras domain, and the crafted Planes domain, shown in Fig-
ure 2. All instances have been translated to make use of
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(define (domain planes)
(:requirements :typing :fluents)
(:types city locatable - object

aircraft person - locatable)
(:functions
(at ?x - locatable) - city
(in ?p - person) - aircraft
(fuel ?a - aircraft) - number
(seats ?a - aircraft) - number
(capacity ?a - aircraft) - number
(onboard ?a - aircraft) - number
(distance ?c1 - city ?c2 - city) - number)

(:action board
:parameters (?p - person

?a - aircraft
?c - city)

:precondition (and (= (at ?p) ?c)
(= (at ?a) ?c)
(> (seats ?a) (onboard ?a)))

:effect (and (assign (at ?p) undefined)
(assign (in ?p) ?a)
(increase (onboard ?a) 1)))

(:action debark
:parameters (?p - person

?a - aircraft
?c - city)

:precondition (and (= (in ?p) ?a)
(= (at ?a) ?c))

:effect (and (assign (in ?p) undefined)
(assign (at ?p) ?c)
(decrease (onboard ?a) 1)))

(:action fly
:parameters (?a - aircraft ?c1 ?c2 - city)
:precondition (and (= (at ?a) ?c1)

(> (onboard ?a) 0)
(>= (fuel ?a)

(distance ?c1 ?c2)))
:effect (and (assign (at ?a) ?c2)

(decrease (fuel ?a)
(distance ?c1 ?c2)))

)

(:action refuel
:parameters (?a - aircraft)
:precondition (and

(< (* (fuel ?a) 2) (capacity ?a))
(= (onboard ?a) 0))

:effect (and (assign (fuel ?a) (capacity ?a)))))

Figure 2: PDDL model of the Planes domain.

object fluents, in order to obtain a compact representation in
the translation to SMT. The Planes domain was crafted due
to the limited interest of the other domains with respect to
numeric interactions between actions. This new domain was
derived from ZenoTravel, by adding some plausible numeric
constraints that will help us demonstrate the goodness of the
semantic approach when determining potential interference
between actions.

We compare the performance of RANTANPLAN with the
exact numeric planner NumReach/SAT (Hoffmann et al.
2007) using MiniSAT 2.2.0, and NumReach/SMT using
Yices v1.0.38. For NumReach/SMT, we had to adapt its out-
put so it could be used with modern SMT solvers. Moreover,
since NumReach supports neither object fluents nor condi-
tional effects, the models have been properly adapted.

Table 1 shows the results for the domains considered us-
ing the RANTANPLAN system. The Syntactic column shows

Depots Domain
n Syntactic Semantic Time Edges
1 4.1 (6) 2.8 (6) 31.4% 41.7%
2 32.0 (9) 18.3 (8) 42.8% 44.2%
3 166.9 (13) 108.9 (13) 34.8% 44.9%
4 438.3 (14) 323.0 (14) 26.3% 45.1%
5 TO (8) TO (17) - 45.1%
6 TO (-) MO (1) - -
7 188.1 (10) 131.0 (10) 30.4% 44.0%
8 MO (3) MO (10) - 44.5%

Zenotravel Domain
n Syntactic Semantic Time Edges
1 0.0 (0) 0.0 (0) 35.3% 76.3%
2 0.1 (3) 0.0 (3) 23% 74.3%
3 0.2 (3) 0.1 (3) 34.6% 66%
4 0.3 (4) 0.1 (4) 43.5% 66.2%
5 0.5 (4) 0.3 (4) 38.9% 71.5%
6 0.8 (6) 0.5 (6) 43.5% 72.1%
7 0.8 (5) 0.4 (5) 47% 72.6%
8 2.8 (5) 1.7 (5) 38.5% 68.3%
9 26.5 (8) 31.0 (8) -16.9% 69.6%
10 41.6 (8) 61.9 (8) -48.7% 70.7%
11 7.1 (6) 4.5 (6) 37.2% 69%
12 105.8 (7) 95.1 (7) 10.1% 70.4%
13 1288.3 (9) 1291.5 (9) -0.2% 72.6%
14 TO (7) TO (7) - 55.0%

Petrobras Domain
n Syntactic Semantic Time Edges
1 14.7 (3) 8.8 (3) 40.7% 50.4%
2 19.3 (4) 11.2 (4) 42.2% 51.8%
3 24.6 (5) 14.0 (5) 43.2% 53.2%
4 47.0 (8) 28.2 (8) 40.1% 54.5%
5 74.9 (9) 59.5 (9) 20.5% 55.8%
6 133.9 (10) 108.7 (10) 18.8% 57.1%
7 700.1 (13) 475.1 (13) 32.1% 58.3%
8 833.4 (13) 800.0 (13) 4.0% 59.5%

Planes Domain
n Syntactic Semantic Time Edges
1 1.0 (13) 0.3 (10) 71.5% 84.5%
2 6.0 (16) 1.1 (12) 81.2% 84.5%
3 49.9 (18) 8.3 (13) 83.4% 86.5%
4 431.1 (21) 40.0 (15) 90.7% 86.5%
5 117.2 (20) 27.0 (15) 77.0% 86.1%
6 1294.6 (23) 193.3 (18) 85.1% 86.1%
7 621.9 (21) 70.9 (16) 88.6% 85.8%
8 834.2 (22) 105.7 (17) 87.3% 85.8%
9 TO (23) 2889.1 (20) - 88.0%

Table 1: Time in seconds followed by the number of par-
allel steps of the plan found between parentheses, for each
instance. TO stands for time out and MO for memory out.
Cutoff set to 3600 seconds. The Time and Edges columns
show the reduction in time and edges of the disabling graph,
respectively, when using the semantic approach. Instances
where all approaches timed out are omitted.
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the results using the generalization of the interference no-
tion of (Rintanen 2009), described at the beginning of sub-
section “Interference Between Actions”, additionally forbid-
ding any two actions to occur in parallel if they modify the
same numeric variable. The Semantic column shows the re-
sults with the lifted semantic notion of interference. In these
two columns the number of parallel steps of the valid plan is
found between parentheses. In case of a time out (TO) the
number between parentheses is the last plan length consid-
ered.

The Time column shows how much faster each instance
is solved with the semantic notion of interference, and the
Edges column shows which percentage of edges of the dis-
abling graph can be avoided thanks to this new interfer-
ence notion. Note that even in instances that need the same
amount of time steps, the reduction of edges in the disabling
graph affects positively on the solving time. This is proba-
bly because we are reducing the number of clauses that do
not contribute at all to the problem.

Accumulated steps Averaged reductions
Family Syntactic Semantic Time Edges
Depots 52 51 33.1% 44.2%
ZenoTravel 68 68 22.0% 70.8%
Petrobras 65 65 30.2% 59.1%
Planes 154 116 84.3% 86.8%

Table 2: Summarized results for the domains considered us-
ing the RANTANPLAN system with the syntactic and the se-
mantic notions of interference. For each domain we report
the total number of steps of the commonly solved instances,
and their averaged reductions in solving time and number of
edges of the disabling graph.

Table 2 gives the number of accumulated parallel time
steps used to reach a valid plan on the commonly solved in-
stances by the two methods implemented in RANTANPLAN.
The other columns show the averaged solving time reduc-
tion and disabling graph edge reduction. Note that even in
domains that maintain the same number of time steps, the re-
duced disabling graphs make solving times notably smaller.

Table 3 shows the results for the domains consid-
ered, comparing NumReach with the semantic version of
RANTANPLAN. NumReach does a good job with the Depots
and ZenoTravel domains, but its performance decreases in
more complex numeric domains like Petrobras and Planes,
where the range of possible values for numeric fluents tends
to grow.

It can be seen that on the Planes domain, containing only
a few non-trivial numeric constraints, classical approaches
(Syntactic and NumReach) tend to be overly restrictive with
respect to incompatibility between actions. In most in-
stances it can be observed an important gap between the
number of time steps needed to find a valid plan by Num-
Reach and our semantic approach. This is also generally
reflected in terms of solving time.

Table 4 lists the total number of instances of each fam-
ily, the number of instances solved by NumReach/SAT and
NumReach/SMT and the number of instances solved by the
presented semantic approach. The last two columns give the

Depots Domain
n NumReach/SAT NumReach/SMT Semantic
1 0.0 (6) 1.5 (6) 2.8 (6)
2 0.5 (9) 8.4 (9) 18.3 (8)
3 5.7 (13) 43.1 (13) 108.9 (13)
4 10.1 (15) 134.7 (15) 323.0 (14)
7 2.5 (11) 35.1 (11) 131.0 (10)
8 TO (-) 362.7 (15) MO (10)
10 4.8 (11) 101.2 (11) MO (-)
13 2.9 (10) 96.3 (10) TO (-)
14 25.1 (16) 1650.0 (13) TO (-)
16 2.2 (9) 118.8 (9) TO (-)
17 6.8 (8) 313.2 (8) TO (-)
19 18.1 (11) 849.4 (11) TO (-)

Zenotravel Domain
n NumReach/SAT NumReach/SMT Semantic
1 0.0 (2) 0.2 (2) 0.0 (0)
2 0.0 (7) 1.5 (7) 0.0 (3)
3 0.1 (6) 3.7 (6) 0.1 (3)
4 0.0 (6) 2.4 (6) 0.1 (4)
5 0.1 (7) 7.0 (7) 0.3 (4)
6 0.0 (7) 4.2 (7) 0.5 (6)
7 0.1 (8) 9.1 (8) 0.4 (5)
8 0.4 (7) 8.1 (7) 1.7 (5)
9 0.3 (9) 18.1 (9) 31 (8)
10 0.7 (9) 24.2 (9) 61.9 (8)
11 3.5 (8) 18.4 (8) 4.5 (6)
12 3.8 (10) 99.6 (10) 95.1 (7)
13 22.2 (11) 555.6 (11) 1291.5 (9)
14 TO (-) 537.4 (9) TO (7)

Petrobras Domain
n NumReach/SAT NumReach/SMT Semantic
1 0.4 (6) 39.8 (6) 8.8 (3)
2 9.8 (9) 56.4 (6) 11.2 (4)
3 17.8 (10) 93.9 (7) 14.0 (5)
4 118.3 (11) 256.5 (9) 28.2 (8)
5 317.9 (14) 312.3 (9) 59.5 (9)
6 325.4 (14) 277.2 (9) 108.7 (10)
7 TO (-) 818.1 (11) 475.1 (13)
8 TO (-) 2753.6 (12) 800.0 (13)

Planes Domain
n NumReach/SAT NumReach/SMT Semantic
1 TO (-) 36.4 (15) 0.3 (10)
2 3.3 (18) 37.9 (18) 1.1 (12)
3 TO (-) 229.9 (20) 8.3 (13)
4 4.4 (22) 632.0 (23) 40.0 (15)
5 TO (-) 768.4 (22) 27.0 (15)
6 TO (-) 1183.7 (25) 193.3 (18)
7 TO (-) 1241.2 (23) 70.9 (16)
8 5.0 (24) 1278.2 (24) 105.7 (17)
9 TO (-) TO (-) 2889.1 (20)
12 15.5 (21) TO (-) TO (19)

Table 3: Time in seconds followed by the number of paral-
lel steps of the plan found between parentheses, for each in-
stance. TO stands for time out and MO for memory out. Cut-
off set to 3600 seconds. Instances where all systems timed
out are omitted.
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Solved instances Accum. steps
# N/SAT N/SMT Sem. N/SMT Sem.

Dep. 22 11 12 5 54 51
Zen. 20 13 14 13 97 68
Petr. 15 6 8 8 69 65
Plan. 12 4 8 9 170 116

Table 4: Summarized results for the domains considered us-
ing NumReach/SAT, NumReach/SMT and RANTANPLAN
with the semantic notion of interference. For each domain
we report the number of solved instances and their accumu-
lated time steps of the commonly solved ones.

number of accumulated parallel time steps used to reach a
valid plan on the commonly solved instances.

Note that the amount of parallelism in RANTANPLAN is
notable. With respect to the number of steps, RANTANPLAN
is strictly more parallel than NumReach/SAT and Num-
Reach/SMT in nearly all instances.

The only domain where the RANTANPLAN planner is not
competitive is the Depots domain. It is obvious that the
reachability approach of NumReach is more adequate for
this domain. Moreover NumReach/SAT dominates Num-
Reach/SMT in this domain. This happens because the nu-
meric reasoning present in the domain is nearly null: the
only functions present are for controlling load limits of
trucks, and thus this domain is perfectly adequate for the ap-
proach used by NumReach/SAT. The use of a Linear Integer
Arithmetic solver in the RANTANPLAN planner is overkill
and a leaner and more efficient approach should be taken for
problems of this kind.

Conclusions and Further Work
We have presented RANTANPLAN, a new system for the set-
ting of exact numeric planning. The planner is based on
translation into SMT using a planning as satisfiability ap-
proach. It takes advantage of background theories in SMT to
easily and transparently handle numeric fluents. Moreover it
uses an SMT solver at compile time to detect in advance in-
compatibility between actions. This incompatibility results
from lifting the interference notion of (Rintanen 2009) to the
setting of planning with resources. We have argued why the
presented approach to interference between actions with nu-
meric fluents is better than purely syntactically based ones,
and provided empirical evidence of its usefulness.

We have also shown that our system is competitive with
the state of the art exact numeric planner NumReach.

As future work, it should be studied how to incorporate
the concepts of relaxed ∃-plans (Wehrle and Rintanen 2007;
Balyo 2013) to our notions of incompatibility and further
develop the more compact QF UFLIA encoding.
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Abstract

One approach to solving planning problems is to compile
them to another problem for which powerful off-the-shelf
solvers are available; common targets include SAT, CSP, and
MILP. Recently, a novel optimization technique has become
available: quantum annealing (QA). QA takes as input prob-
lem instances encoded as Quadratic Unconstrained Binary
Optimization (QUBO). Early quantum annealers are now
available, and more sophisticated quantum annealers will
likely be built over the next decades. Specific quantum an-
nealing hardware implementations have specific constraints,
restricting the types of QUBOs each can take as input. In
this paper, we introduce the planning community to the key
steps involved in compiling planning problems to quantum
annealing hardware: a hardware-independent step, mapping,
and a hardware-dependent step, embedding. After describ-
ing two approaches to mapping general planning problems to
QUBO, we provide preliminary results from running an early
quantum annealer on a parameterized family of hard planning
problems. The results show that different mappings can lead
to a substantial difference in performance, even when many
superficial features of the resulting instances are similar. We
also provide some insights gained from this early study, and
suggest directions for future work.

Introduction
One approach to solving planning problems is to compile
them to another problem for which powerful off-the-shelf
solvers are available; common targets include SAT, CSP, and
MILP. Recently, a novel optimization technique has become
available: quantum annealing. Quantum annealing is one of
the most accessible quantum algorithms for a computer sci-
ence audience not versed in quantum computing because of
its close ties to classical optimization algorithms such as
simulated annealing.

While large-scale universal quantum computers are likely
decades away from realization, we expect to see a variety of
special-purpose quantum-computational hardware emerge
within the next few years. Already, early quantum anneal-
ers are available, and more sophisticated quantum annealers
will be built over the next decades. While certain classes
of problems are known to be more efficiently solvable on
a universal quantum computer (Rieffel and Polak 2011;
Nielsen and Chuang 2001), for the vast majority of prob-
lems the computational power of quantum computing is un-

known. Until quantum hardware became available it was
impossible to empirically evaluate heuristic quantum algo-
rithms such as quantum annealing.

While there are intuitive reasons why quantum anneal-
ing may be able to outperform classical methods on some
classes of optimization problems, the effectiveness of quan-
tum annealing is as yet poorly understood. Our work is
the first to explore the use of quantum annealing to attack
problems arising in planning and scheduling. This work ex-
plores compilation of planning problems to quadratic uncon-
strained binary optimization (QUBO) problems, the type of
problem that quantum annealers are designed for. While the
immaturity of the technology means that current results are
limited, the significant performance differences that result
from different compilation approaches suggest that subtle
issues are at play in determining the best compilation ap-
proaches for quantum annealers.

In this paper, we introduce the planning community to the
key steps involved in compiling planning problems to quan-
tum annealing hardware. Figure 1 shows the main steps in
our framework of solving STRIPS planning problems (Fikes
and Nilsson 1972; Ghallab, Nau, and Traverso 2004) repre-
sented in PDDL using a D-Wave quantum annealer housed
at NASA Ames Research Center: mapping the problems
to QUBO, and embedding, which takes these hardware-
independent QUBOs to other QUBOs that matches the spe-
cific quantum annealing hardware that will be used. While
debate continues as to the extent to which the D-Wave ma-
chine is quantum (Johnson et al. 2011b; Boixo et al. 2013;
Smolin and Smith 2013; Wang et al. 2013; Boixo et al. 2014;
Shin et al. 2014b; Vinci et al. 2014; Shin et al. 2014a), these
machines provide the first opportunity for researchers to ex-
periment with quantum annealing. This work does not aim to
contribute to that debate, but rather examines different map-
pings of application problems to quantum annealing to give
insight into their relative strengths and weaknesses as best
we can with current technology.

We describe two approaches to mapping general STRIPS
planning problems to QUBO problems. The mappings were
described in (Rieffel et al. 2014b), where one is a variant
of the mapping described in (Smelyanskiy et al. 2012). We
explore the properties of these mappings for a parametrized
family of scheduling-type planning problems based on graph
coloring (Rieffel et al. 2014a). We discuss preliminary re-
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Figure 1: The main steps in our approach of using quantum
annealer to solve a planning problem.

sults from an early quantum annealer, a D-Wave Two ma-
chine, applied to these problems under the two general map-
pings. Due to the current hardware limitation of existing
quantum annealers, our empirical evaluation has been con-
ducted on a limited set of small planning problems. Never-
theless, these early results show that different compilations
to QUBO can lead to substantial differences in performance,
even when many features of both the mapping and embed-
ded QUBOs are similar.

Our paper is a reworking and deepening of our paper
(Rieffel et al. 2014b) to target planning and scheduling re-
searchers, rather than quantum computing researchers. Our
main contributions are:

• A description of quantum annealing with example appli-
cations to planning;

• Two different ways of compiling general planning prob-
lems to QUBO; and

• Results from runs of a parametrized family of scheduling-
type planning problems on an early quantum annealer.

We begin with an overview of quantum annealing, includ-
ing the mapping and embedding compilation steps.

Ingredients of Quantum Annealing
Quantum annealing (Farhi et al. 2000; Das
and Chakrabarti 2008; Johnson et al. 2011a;
Smelyanskiy et al. 2012) is a metaheuristic for solving
optimization problems which bears some resemblance to
simulated annealing, a classical metaheuristic. Quantum
annealers are special-purpose devices designed to run
only this type of quantum algorithm. Other types of quan-
tum algorithms are known that take on quite a different
form, and are aimed at solving other types of problems.
Quantum annealing can be applied to any optimization
problem that can be expressed as a quadratic uncon-
strained binary optimization (QUBO) problem (Choi 2008;

Figure 2: The (3, 4)-Chimera graph. A schematic di-
agram from (Smelyanskiy et al. 2012) of the (M,L)-
Chimera graph underlying D-Wave’s architecture. In the
(3, 4)-Chimera graph shown, there are M2 = 9 unit cells,
each of which is a fully-connected bipartite graph K4,4 con-
taining 2L qubits. The qubits in the left column of each unit
cell are connected to the analogous qubits in the unit cells
above and below and the qubits in the right column of each
unit cell are connected to the analogous qubits in the unit
cells to the right and left.

Smelyanskiy et al. 2012; Lucas 2013). Quantum anneal-
ing is motivated by the possibility that quantum effects
such as tunneling allow for efficient exploration of the cost-
function landscape in ways unavailable to classical methods.

Input for quantum annealing: QUBO problems
QUBO problems are minimization problems with cost func-
tions of the form

q(z1, . . . , zN ) = −
N∑

i=1

hizi +
N−1∑
i=1

N∑
j=i+1

Ji,jzizj , (1)

where the zi are binary variables. A QUBO can be eas-
ily translated to an Ising Hamiltonian, the form of input a
quantum annealer takes, through the linear transformation:
zi = 1

2 (si + 1).
The simplicity of the QUBO formalism belies its expres-

sivity. There exist many techniques for mapping more com-
plicated problems to QUBO:

• Many optimization problems can be expressed in terms
of cost functions that are polynomials over finite sets of
binary variables. Any such function can be re-expressed,
through degree-reduction techniques using ancilla vari-
ables, as quadratic functions over binary variables. We de-
scribe such degree-reduction technique in our section on
the CNF mapping of planning problems to QUBO below.
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• Cost functions involving non-binary, but finite-valued,
variables can be rewritten in terms of binary variables
alone, and optimization problems with constraints can of-
ten be written entirely in terms of cost functions over bi-
nary variables through the introduction of slack variables.

For these reasons, the QUBO setting is more general than it
may, at first, seem.

Before describing the more complex QUBO mappings
for general STRIPS planning problems, we give an example
of a simple mapping from graph coloring to QUBO to give
a feel of how mapping to QUBO works.

Example 1: Mapping of Graph Coloring, in which all ver-
tices are to be colored so any two vertices connected by an
edge have different colors, to QUBO.

Let G = (V,E) be a graph with n = |V | vertices, where
E is the set of edges. The QUBO problem corresponding to
the graph coloring problem with k colors on graph G, will
have kn binary variables, zic, where zic = 1 means that
vertex i is colored with color c, and zic = 0 means it is not.

The QUBO contains two different types of penalty terms.
The first corresponds to the constraint that each vertex must
be colored by exactly one color:

∑k
c=1 zic = 1. So for each

vertex i, we have a term(
1−

k∑
c=1

zic

)2

.

The second corresponds to the constraint that two vertices
connected by an edge cannot be colored with the same color.
For each vertex i, we have a term∑

(i,j)∈E

k∑
c=1

ziczjc.

Altogether, the QUBO is

n∑
i=1

(
1−

k∑
c=1

zic

)2

+
∑

(i,j)∈E

k∑
c=1

ziczjc.

Example 2: Mapping of Hamiltonian Path problem, in
which the goal is a path that visits each vertex in a graph
G = (V,E) exactly once, to QUBO.

For a Hamiltonian path problem with n sites, we have n2

variables

{x11, . . . , x1n, x21, . . . , x2n, . . . , xn1, . . . , xnn.}

The subscripted indices indicate, in order, a site and the time
slot in which it is visited; xij = 1 means that the ith site is
the jth site visited, and xij = 0 means that the ith site is not
visited in the jth time slot.

There are three types of terms in the QUBO cost function.
The first type of term enforces that each site is visited exactly
once. Thus, for each site i, we will have a constraint: n∑

j=1

xij − 1

2

.

The second type of term enforces that in each time slot no
more than one site is visited. Thus, for each time slot j:(

n∑
i=1

xij − 1

)2

.

The third type of term is a single term penalizing the vi-
olation of edge constraints. It penalizes visiting the i′th site
right after the ith site if they are not connected by an edge:

j=n−1∑
j=1

∑
{i,i′|(i,i′)/∈E}

xijxi′,j+1.

Embedding QUBOs in Specific Quantum
Annealing Hardware
As outlined for planning in Figure 1, once an application in-
stance has been mapped to a QUBO problem, a second step
is required to compile it to the specific quantum annealing
hardware that will be used. Typically, each quantum device
has a set of physical quantum bits (qubits) that are linked in
a certain way. Ideally, each binary variable zi in a QUBO
formula would be represented by a single qubit qi of the ma-
chine. Hardware constraints place limits, however, on which
qubits can be connected to which other qubits.

The strength of the coupling between two qubits qi and
qj representing two binary variables zi and zj can model
the term Ji,jzizj in the QUBO formula 1 introduced above.
The D-Wave processors use a Chimera architecture in which
each qubit is connected to at most 6 other qubits (Fig. 2), so
any QUBO variable that appears in more than 6 terms must
be represented by multiple physical qubits in order for the
problem to be implemented in this architecture. The D-Wave
Two used in the experiments has a (8, 4)-Chimera graph ar-
chitecture, but with 3 broken qubits that are not used. Other
limitations, beyond the degree 6 constraint, exist as well.
Therefore, each logical qubit must be mapped to a connected
set of physical qubits, which, together with the connecting
edges, is called the logical qubit’s vertex-model. The overall
mapping of logical qubits and couplers to physical ones is
called a model, as discussed below.

Consider, for example, a simple QUBO

z1z2 + z1z3 + z2z3,

which can be represented as a triangle, with the three vari-
ables as the vertices, and the edge between each pair of
vertices indicating a quadratic term of the QUBO. Ideally,
we would represent each of these variables by qubits q1,
q2, and q3 with hardware connections between each pair
so that the three terms in the QUBO can be directly real-
ized in the hardware. Fig. 2 shows the qubit connections for
the type of quantum annealing architecture we used in these
experiments. In that graph, no three qubits are all mutually
connected to each other. The best we can do is to use four
qubits to represent the three variables z1, z2, and z3. We may
take, for example, z1 to be represented by q52 and q56, z2 to
be represented by q51, and z3 to be represented by q55, so
that there is a connection corresponding to each of the three
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terms in the QUBO: the term z1z2 can be implemented us-
ing the connection between qubits q56 and q51, the term z1z3

can be implemented using the connection between qubits q52

and q55, and the term z1z2 can be implemented using the
connection between qubits q51 and q55. We will also need
to use the connection between qubits q52 and q56 to enforce
that the two qubits take on the same value since together they
are meant to represent a single variable.

Mapping General STRIPS Planning Problems
to QUBO

In this section, we describe two different mappings from a
general class of planning problems to QUBO. Specifically,
we consider STRIPS planning problems, classical planning
problems that are expressed in terms of binary state vari-
ables and actions. The first mapping takes a time-slice ap-
proach. The second approach first maps a planning problem
to SAT, and then reduces higher order terms to quadratic
terms through a series of gadgets. Our mappings allow both
positive and negative preconditions.

Time-slice Mapping
This mapping from general classical planning problems to
QUBO form is a variant of the one developed and described
in (Smelyanskiy et al. 2012). This approach shares many
similarities with existing compilation approaches (to SAT,
CSP, MILP etc.) derived from the Plan Graph (Blum and
Furst 1997). Specifically, it presets a horizon L and then en-
code the interleaving proposition and action layers up to the
preset level L.

If the original planning problem has N state variables xi

and M actions yj and we are looking for a plan of length
L, then we define a time-slice QUBO problem in terms of
N(L+ 1) + LM binary variables. There are two groups of
binary variables. The first group consists ofN(L+1) binary
variables x(t)

i that indicate whether the state variable xi is 0
or 1 at time step t, for t ∈ {0, . . . , L}. The second group
consists of LM binary variables y(t)

j that indicate whether
or not the action yj is carried out between time steps t − 1
and t.

The total cost function is written as a sum

H = Hinitial +Hgoal +Hprecond

+Heffects +Hno− op +Hconflicts.

The first two terms capture the initial condition and the
goal condition. Let I(+) be the set of state variables that are
1 in the initial condition and I(−) be the set of state variables
that are initially set to 0. Similarly, let G(+) (resp. G(−)) be
the set of goal variables with value 1 (resp. 0). To capture the
requirement that a plan start in the appropriate initial state
and meets the goals, we include in the cost function:

Hinitial =
∑

i∈I(+)

(
1− x(0)

i

)
+
∑

i∈I(−)

x
(0)
i

and
Hgoal =

∑
i∈G(+)

(
1− x(L)

i

)
+
∑

i∈G(−)

x
(L)
i .

We next add terms to the cost function that penalize a plan
if an action is placed at time t but the prior state does not
have the appropriate preconditions:

Hprecond =
L∑

t=1

M∑
j=1

 ∑
i∈C(+)

j

(
1− x(t−1)

i

)
y

(t)
j

+
∑

i∈C
(−)
j

x
(t−1)
i y

(t)
j

 ,

where C(+)
j is the set of positive preconditions for action j

and C(−)
j is the set of negative preconditions.

Next, we must penalize variable changes that are not the
result of an action. We start with this term, the Hno-op term,
that penalizes variable changes:

Hno-op =
L∑

t=1

N∑
i=1

[
x

(t−1)
i + x

(t)
i − 2x(t−1)

i x
(t)
i

]
.

This term gives a cost penalty of 1 every time a variable is
flipped. Of course, when the effect of an action does result
in a variable flipping, we do not want this penalty, so we
will make up for this penalty when we add the term that
corresponds to the effects of an action. Specifically, we need
to penalize if the subsequent state does not reflect the effects
of a given action. Let E(+)

j be the set of positive effects for

action j and E(−)
j the set of negative effects. The penalty if

the appropriate effects do not follow the actions is captured
by the following term:

Heffects =
L∑

t=1

M∑
j=1

 ∑
i∈E(+)

j

y
(t)
j

(
1 + x

(t−1)
i − 2x(t)

i

)

+
∑

i∈E(−)
j

y
(t)
j

(
2x(t)

i − x
(t−1)
i

) .

In order to understand this term, we must consider it together
with the no-op term. When y(t)

j = 1, the corresponding term

for i ∈ E(+)
j (resp. i ∈ E(−)

j ), taken together with the no-op
term, can be written(

1 + 2x(t−1)
i

)(
1− x(t)

i

)
(resp. (

3− 2x(t−1)
i

)
x

(t)
i

for negative effects), resulting in a positive penalty unless
x

(t)
i = 1 (resp. x(t)

i = 0). By using this form we have
corrected for the corresponding no-op term.

Parallel Plans: Classical planners often allow for parallel
plans in which more than one action can take place at one
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time if those actions could have been done in any order.
Encodings that allow parallel plans are often significantly
smaller due to the big reduction in the preset horizon value
L. The QUBO encoding described so far works fine for
domain with linear plans, but when more than one action
can take place at a given time, we are in danger of over-
correcting for the no-op term. If multiple actions at the same
time have the same effect, the Heffects term will add a term
for each of those actions, thus overcompensating for the no-
op penalty. To avoid overcompensating, we penalize mul-
tiple actions at the same time having the same effect, dis-
couraging all such actions1. To ensure that two actions that
conflict in the sense that positive preconditions of one over-
lap with negative effects of the other or vice versa, and to
avoid overcompensating, we include the penalty

Hconflict =
L∑

t=1

N∑
i=1

 ∑
n

j
˛̨̨
i∈C(+)

j ∪E(−)
j

o
∑

n
j′ 6=j

˛̨̨
i∈E(−)

j′

o y(t)
j y

(t)
j′

+
∑

n
j
˛̨̨
i∈C(−)

j ∪E(+)
j

o
∑

n
j′ 6=j

˛̨̨
i∈E(+)

j′

o y(t)
j y

(t)
j′

 .

Encoding Size Improvements: While for explanatory pur-
poses it was useful to include variables for the state at time
t = 0, those specified by initial conditions can be set ahead
of time, so that we don’t need to include the Hinitial term.
The same is true of theHgoal term. We can also replace all of
their occurrences inHno-op,Hprecond, andHeffect with these
set values to simplify those constraints. Furthermore, reach-
ability and relevant analysis starting from the initial and goal
states, preprocessing techniques employed by compilation-
based planners such as Blackbox (Kautz and Selman 1999)
and GP-CSP (Do and Kambhampati 2001), can be used to
remove or preset the values of variables in different lay-
ers. These simplifications result in modified terms H ′no-op,
H ′precond, and H ′effects. Additionally, since in our setting we
have followed the convention that preconditions must be
positive, we can use a simpler version of the Hprecond term:

H ′precond =
L∑

t=1

M∑
j=1

∑
i∈C(+)

j

(
1− x(t−1)

i

)
y

(t)
j .

For the scheduling problems we consider here, the QUBO
simplifies to

H = H ′no-op +H ′precond +H ′effects +Hconflict.

CNF-based Mapping
Besides direct mapping, we also experimented with getting
the QUBO encoding by first mapping planning problems to

1A less stringent way to avoid overcompensating would be to
add this penalty only when the effect changes the variable, as we
have done in the no-op term. The problem is that natively that is
not a quadratic term. Of course one could then reduce that term,
but here we choose to use the more stringent solution.

SAT (in CNF form) and then using the known approach to
map the resulting CNF encoding to QUBO.

A SAT’s conjunctive normal form (CNF) expression over
n Boolean variables {xi} consists of a set of clauses {Ca}
each consisting of k variables, possibly negated, connected
by logical ORs:

b1 ∨ b2 ∨ · · · ∨ bk,
where

bi ∈ {x1, x2, ..., xn,¬x1,¬x2, ...,¬xn},

and the number of variables k in the clause can vary from
clause to clause. In a CNF, all of the clauses must be satis-
fied, which means they are connected by an AND operator.

We used the first of the four PDDL to CNF transla-
tors built into the SATPLAN planner (Kautz 2004). This
“action-based” encoding starts with the time-slice encoding
approach and then further removes all variables represent-
ing state variables while adding constraints that capture the
relationships between actions in consecutive time steps that
were previously enforced by relationships between actions
and state variables. We chose this encoding because it tends
to produce the smallest SAT encodings. While it may not be
the easiest to solve by a SAT solver, it’s more likely to be
translatable to a QUBO that can fit within our very limited
number of available qubits in the D-Wave machine.

We convert a CNF instance to QUBO by first transform-
ing it to Polynomial Unconstrained Binary Optimization
(PUBO), a generalization of QUBO in which the objective
function is a pseudo-Boolean of arbitrary degree. For each
clause in a given CNF instance, we introduce a term to the
PUBO instance equal to the conjunction of the negation of
all the literals in that clause. Thus, an original negative lit-
eral is replaced by the corresponding binary variable and a
positive literal is replaced by the difference of one and the
corresponding binary variable. For example, the CNF clause
(x1 ∨¬x2 ∨¬x3 ∨x4) would correspond to the PUBO term
(1− x1)x2x3(1− x4).

We then reduce higher degree terms in the PUBO in-
stance using an iterative greedy algorithm that is related
to one described in (Boros and Hammer 2002). At each
step, the pair of variables that appears in the most terms
is replaced by an ancilla variable corresponding to their
conjunction. If there are multiple such pairs, then one is
chosen arbitrarily. A penalty term is introduced to enforce
that the ancilla variable indeed corresponds to the requi-
site conjunction. For example, to reduce the degree of a
term x1x2x3, we may introduce an ancilla variable y12 that
we will encourage to equal x1x2 by using a penalty term
3y12+x1x2−2x1y12−2x2y12, which is 0 if y12 = x1x2 and
> 0 otherwise. The term x1x2x3 is removed from the PUBO
and replaced with y12x3 +3y12 +x1x2− 2x1y12− 2x2y12.
The penalty weight we use is equal to one plus the greater of
the sums of the magnitudes of the positive coefficients and
negative coefficients of the terms the ancilla is used to reduce
(Babbush, O’Gorman, and Aspuru-Guzik 2013). The one is
added to ensure that the constraint-satisfying solutions have
lower total cost than the constraint-violating solutions. One
is convenient, and in keeping with the integer coefficients
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for the other terms, but any positive constant would do. This
procedure is repeated until the resulting PUBO is quadratic.

Experimental Setup
To evaluate our approach, we use the benchmark set of
planning instances based on graph-coloring (Rieffel et al.
2014a) that consist of parametrized families of hard plan-
ning problems. Having parametrized families enables the in-
vestigation of scaling behavior using small problems, which
is crucial for evaluating early technology that is not mature
enough to run real-world problems. Even when setting the
encoding horizon of the graph-coloring to 1 to fit them onto
the 512 qubits available in current quantum annealers, the
problems can still be considered hard. Note that vertex color-
ing, an NP-complete problem, is strongly related to the core
scheduling aspect of many planning applications (Chien et
al. 2012). A scheduling problem in which no pair of tasks
can be assigned the same time-slot is analogous to a color-
ing instance in which the the tasks are vertices, conflicts are
edges, and the minimum makespan is the chromatic number,
i.e. the minimum number of colors necessary to color each
of the vertices such that no two adjacent ones have the same
color.

Because of the overhead in mapping and embedding plan-
ning problems, even the smallest IPC problems (IPC 2004)
are more than an order of magnitude too large to be run on
the current D-Wave device. Therefore, we currently do not
include the any result on existing IPC benchmarks.

Vertex Coloring as Planning
Given an undirected graph G = {V,E} with n vertices and
k colors, the vertex coloring problem asks for a solution in
which: (1) all vertices are colored and (2) any pair of vertices
connected by an edge is colored differently. The correspond-
ing planning problem is as follows: for each vertex v there
are:

• k actions ac
v representing coloring v with color c;

• A ‘goal variable’ sg
v representing whether or not v has

been colored at all; and

• A state variable sc
v representing whether or not v has been

colored with the color c.

Let C(v) be the set of neighboring vertices that are
connected to v by an edge. For each action ac

v , there are
|C(v)|+1 preconditions: (1) sg

v = F , which indicates that v
is not already colored; and (2) for each w ∈ C(v), sc

w = F ,
guaranteeing that none of neighboring vi are already colored
with color c.

Each action ac
v has two effects: sg

v = T and sc
v = T .

In the initial state, none of the vertices are colored:
∀v ∈ V,∀c ∈ [k] : sg

v = F , and sc
v = F . The goal state

requires that all vertices are colored: ∀v ∈ V : sg
v = T .

A plan is a sequence of n actions, each of which colors a
vertex v.

Problem generation: We parametrically generate instances
using Erdös-Rényi model of random graphs Gn,p, where n
is the number of vertices and p is the probability of an edge

between each pair of vertices, using an extension of Cul-
berson et al.’s (Culberson, Beacham, and Papp 1995) graph
generator program. Our extension generates PDDL files (Ri-
effel et al. 2014b), at the phase transition c = pn = 4.5
(Achlioptas and Friedgut 1999; Dubois and Mandler 2002;
Achlioptas and Moore 2003; Coja-Oghlan 2013).

We preset the number of colors to k = 3 and for that k
value the maximum problem size that we can embed in the
D-Wave Two machine with 509 qubits is n = 16. Specif-
ically, for each of n = 8, 9, . . . , 16, we use 100 solvable
problem instances at the phase transition for each size. For
n = 12 to n = 16, we reuse problems generated in (Rieffel
et al. 2014a), and for n = 8 to n = 11, we generate new
ones using the same approach.

For each generated instance, we then generate 3 different
QUBOs, each described in the previous sections: (i) direct
mapping; (ii) time-slice mapping; and (iii) CNF-based
mapping.

Embedding: From a mapped QUBO instance, we generate
a vertex model by running D-Wave’s heuristic embedding
software (Cai, Macready, and Roy 2014) on the mapped
QUBO instance, using the software’s default parameters.
The output of the embedding software is a set of pairwise-
disjoint, connected vertex models {Ci} in the hardware
graph corresponding to the variables {zi} in the original
QUBO, which will then be converted to Ising form to be
run on the D-Wave machine. Before running, the Ising is
rescaled so that all coefficients are between [−1, 1]. We
performed our own parameter setting following (Rieffel
et al. 2014b), rather than using D-Wave’s defaults. The
parameter settings for these runs are discussed in detail in
(Rieffel et al. 2014b).

Solving: All quantum annealing runs were performed on the
509-qubit D-Wave Two machine housed at NASA Ames.
While debate continues as to the best physical model for
D-Wave machines (Johnson et al. 2011b; Boixo et al. 2013;
Smolin and Smith 2013; Wang et al. 2013; Boixo et al. 2014;
Shin et al. 2014b; Vinci et al. 2014; Shin et al. 2014a), these
machines provide the first opportunity for researchers to ex-
periment with quantum annealing. In all cases, we used an
annealing time of 20 µsec, the shortest available on the hard-
ware, though evidence suggests that a shorter time may be
optimal for problems of the present size. For each embed-
ded QUBO instance, we performed 45, 000 anneals using
each of ten gauges (i.e. local symmetry transformations that
leave the objective function invariant but physically change
the effect of biases (Perdomo-Ortiz et al. 2015)), for a total
of 450, 000 anneals per QUBO instance.

Because all of the problems we consider are solvable, we
know the ground state energy (i.e., optimal value for the
function q in Equation 1) in all cases; zero, the minimal
value of the QUBO in all cases is attainable, and from that
we can compute the ground state energy of the embedded
Ising problem that was actually run. (Even for unsolvable
instances, the quantum annealer would return solutions in
exactly the same way it does when it fails to find a schedule
when it exists.) For each embedded instance, once we obtain
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the 450, 000 results from the run, we check how many times
the ground state energy was obtained, which gives us the
probability of solution r for a 20 µsec anneal. We then com-
pute the expected number of runs R = ln(1−0.99)

ln(1−r) required
to obtain a 99% success probability, multiply by the anneal
time of 20 µsec, and report 20 × R µsec, the expected to-
tal anneal time to obtain a 99% success probability. We are
effectively using a 0.9 sec. cutoff time, since the expected
anneal time when only one anneal solves is 0.9 secs. Given
that classical planners solve these problems in less than 0.1
secs., with the best planners for these problems solving them
in less than 0.01 secs. (Rieffel et al. 2014a), this cutoff time
seems reasonable.

We report the median expected total anneal time across
100 instances, with error bars corresponding to the 35th
and 65th percentiles. Thus each data point shown represents
45 million anneals. While the total annealing time for each
point is only 90 seconds, because the process to read-out
the state of all qubits (i.e. solution extraction) takes consid-
erably longer than the anneal time, and because of shared
use of the machine, the wall clock time to obtain a single
data point is hours not minutes. Finding the embedding, by
far the longest step in the process, can take minutes for the
largest instances, but fortunately needs to be performed only
once per QUBO instance.

Results and Analysis
Fig. 3 shows the relative performance, in terms of median
expected total annealing time for 99% percent success, of
the D-Wave Two on the family of graph coloring-based plan-
ning problems described above. When at least half of the in-
stances do not solve within the 0.9 sec. effective cutoff time,
we no longer show the point. For the CNF mapping, that
happens by problem size 11. For the time-slice instances, at
least half do not solve within the cutoff time by problem size
13. The figure also shows the performance using a direct
map of graph coloring to QUBO.This direct mapping per-
forms better than both of the general mappings for planning
problems; it is more compact (due to its being specific to this
type of problem) and likely benefits from an homogeneous
parameter setting (Venturelli et al. 2014), as it generates a
more uniform distribution of vertex model sizes (see Fig. 5)
than the other two mappings.

There is a substantial difference between the performance
on the time-slice instances and the CNF instances, with
the median expected total annealing time to achieve 99%
success being about a factor of 5 greater for the CNF
instances than the time-slice instances (Fig. 3). The scaling
for the time-slice approach is also significantly better than
for the CNF approach, with an α value of 1.37 rather than
1.76 (though the scaling is estimated on very few data
points).

QUBO size: (Rieffel et al. 2014b) compared some straight-
forward properties of both the mapped and embedded QU-
BOs for the two mappings, but these simple properties were
all sufficiently similar across the two mappings that they
could not account for so marked a difference in perfor-
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Figure 3: Comparison of the median expected total an-
neal time to 99% percent success for the two mappings.
Each data point shows the median expected total annealing
time to achieve 99% success over the 100 problems of each
size given on the x-axis. The error bars are at the 35th and
65th percentiles. When at least half of the instances do not
solve within the 0.9 sec. effective cutoff time, we no longer
show the point. Also, when fewer than 65% solve, the top of
the error bar is indeterminate, as happened for the last point
shown in both the CNF and time-slice series.

mance. In summary, the time-slice and CNF mappings yield
comparably-sized QUBOs, with similar numbers of cou-
plings. For problem size n, the time-slice mapping yields
a QUBO of size 8n qubits. The CNF approach yields vari-
able size mapped QUBOs, with the median size CNF QUBO
over 100 problems only 4–8 qubits larger than the median
size of the time-slice QUBOs for problem sizes 8–12. This
slight difference in size cannot account for the difference
in performance because for larger size problems, when the
time-slice QUBOs begin to exceed the CNF QUBOs in size,
the performance of the former is still better. Similarly, the
median number of couplings for the CNF QUBOs exceeds
that of the time-slice QUBOs by only 8–16 for problem sizes
8–12.

The most obvious properties of the embedded QUBOs
are also similar. The median embedding sizes of the CNF
QUBOs are only 7–28 qubits larger than the embedded
time-slice QUBOs in this range, no more than a 10%
difference. Large embedded vertex models contribute to
poor performance, but the median (over the 100 problems)
average vertex model size, and the median 90th percentile
vertex model size of the embedded QUBOs for the two
different mappings are virtually indistinguishable. A small
difference between the median maximum vertex model sizes
is seen, but it is not statistically significant. Furthermore,
throughout the size range tested, the median median vertex
model size – the median over the 100 problem instances
of the median vertex model size of each instance – and
even the median 65th percentile vertex model size, for both
mappings is 1.

Deeper analysis: We took a deeper look at the distributions

Proceedings of the Workshop on Constraint Satisfaction Techniques for Planning and Scheduling Problems (COPLAS-15)

17



0
1
03

2
·1

03
3
·1

03 direct

n=8 n=9 n=10 n=11 n=12
0

1
03

2
·1

03
3
·1

0
3 time-slice

0 4 8 1
2

0
1
03

2
·1

03
3
·1

03 CNF

0 4 8 1
2 0 4 8 1
2 0 4 8 1
2 0 4 8 1
2

Figure 4: Vertex degree histogram. Histograms of the ver-
tex degrees for the mapped QUBO graphs for each problem
size under the three mappings: direct mapping, time-slice
mapping, and CNF mapping.

of various simple properties related to the mapped and em-
bedding QUBOs arising from the two mappings. We also
show the distributions for the direct map for comparison.
In the mapped QUBOs, we looked at the distribution of of
vertex degrees (the number of quadratic terms in which a
variable zi appears in the mapped QUBO). As can be seen
in Fig. 4, the histograms for the time-slice and CNF map-
pings are very similar, while they differ markedly from the
histograms for the direct map. In the embedded QUBOs, we
looked at the distribution of the vertex model sizes (Fig. 5)
and also the distribution of the graph diameter of the vertex
models (not shown), but found little difference between the
distributions for the time-slice and CNF embedded QUBOs.
Therefore these properties can contribute at most a small
amount to the performance difference between the two map-
pings.

We begin to see differences when we look at distribu-
tions of the coefficients in the mapped QUBOs. Fig. 6 shows
histograms of the coefficient of the mapped QUBOs (Equa-
tion 1) , converted to Ising, and rescaled so that all of the hi

and Jij coefficients are between [−1, 1]. Let ji =
∑

j Jij .
Fig. 7 shows a histogram of the hi and ji. Both histograms
show significant differences between the two mappings.

Another potential origin of the performance difference is
the topology of the vertex models. A quick analysis showed
that for all three mappings nearly all (> 99%) of the vertex
models of the embedded QUBOs are trees. We intend to do a
further classification of the graph structures, and to examine
differences in the frequency of different structures between
the mappings.
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Figure 5: Vertex model size histogram. Histograms of the
vertex model sizes in the embedded QUBOs for each prob-
lem size under the three mappings: direct mapping, time-
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Conclusions and Future Work
We show how quantum annealing can solve planning prob-
lems via mapping to QUBO. We introduced two general
mapping techniques and applied them to planning problems
based on graph-coloring. We ran these problems on an early
quantum annealer and saw significant performance differ-
ences. We began an investigation of various properties of the
mapped and embedded QUBOs to understand which proper-
ties do and do not contribute to the performance differences.

In the future, we will examine the differences in distri-
bution of coefficients and the topology of vertex-models to
generate hypotheses regarding properties that could explain
the performance differences. To test these hypotheses, we
will generate small, artificial instances capturing those prop-
erties and evaluate the annealer’s performance. For the prop-
erties that pass this initial test, we will perform a statisti-
cal analysis of the correlation between them and the per-
formance of the annealer on the family of scheduling-type
problems.

While at this early stage there is no advantage in solv-
ing STRIPS planning problems via quantum annealing over
classical compilation approaches such as SAT, CSP, or
MILP, we believe quantum annealing, and especially com-
pilation techniques for quantum annealing, are both worth
exploring even on primitive quantum hardware for several
reasons. First, certain quantum algorithms have been proven
to outperform classical algorithms on classes of problems of
practical interest, sometimes, as for factoring, reducing the
complexity from superpolynomial to polynomial. Many of
the most useful classical algorithms in use today are heuris-

tic algorithms, which have not been mathematically proven
to outperform other approaches, but have been shown to be
more effective empirically. Until recently, it was not possible
to explore existing quantum heuristic algorithms, because
without quantum hardware an empirical analysis could not
be done. One of the biggest open questions in quantum com-
puting is the breadth of its applications, with the potential
of heuristic quantum algorithms, such as quantum anneal-
ing, being the biggest unknown. Major hardware develop-
ment efforts are underway to build better quantum computa-
tional hardware. In order to fully explore the potential of this
hardware, we must understand how best to compile practical
problems to a form that is suitable for quantum hardware.

While early quantum annealing hardware can handle only
small instances, by analyzing the results obtained under
these limitations, we can nevertheless gain insights into the
best programming and compilation techniques for quantum
annealers, and ultimately into the potential of quantum an-
nealing to solve problems of practical interest in planning
and scheduling and beyond.
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Abstract

Logic-based Benders decomposition (LBBD) has improved
the state of the art for solving a variety of planning and
scheduling problems, in part by combining the complemen-
tary strengths of constraint programming (CP) and mixed
integer programming (MIP). We undertake a computational
analysis of specific factors that contribute to the success of
LBBD, to provide guidance for future implementations. We
study a problem class that assign tasks to multiple resources
and poses a cumulative scheduling problem on each resource.
We find that LBBD is at least 1000 times faster than state-of-
the-art MIP on larger instances, despite recent advances in
the latter. Further, we conclude that LBBD is most effective
when the planning and scheduling aspects of the problem are
roughly balanced in difficulty. The most effective device for
improving LBBD is the inclusion of a subproblem relaxation
in the master problem. The strengthening of Benders cuts
also plays an important role when the master and subproblem
complexity are properly balanced. These findings suggest
future research directions.

Introduction
Logic-based Benders decomposition (LBBD) is a gener-
alization of classical Benders decomposition that can be
applied to a much wider variety of combinatorial optimiza-
tion problems. LBBD is particularly attractive for planning
and scheduling, where it can combine mixed integer pro-
gramming (MIP) and constraint programming (CP) in a way
that exploits their relative strengths. Implementations of
this method have obtained computational results superior to
those of state-of-the-art MIP and CP solvers, sometimes by
several orders of magnitude

However, a computational analysis of the precise factors
responsible for this success has never been conducted. In
particular, applications of LBBD typically strengthen the
Benders cuts in various ways, as well as including a sub-
problem relaxation in the master problem, on the assumption
that these techniques improve performance. We undertake
here a systematic study of their actual impact. In addition,
because MIP technology has improved markedly in recent
years, we compare LBBD with a recent state-of-the-art

⇤This work was partially supported by NSF Grant 1130012 and
AFOSR grant FA9550-11-1-0180.

commercial MIP solver (CPLEX) to determine whether the
advantage of LBBD persists.

We focus attention on a basic planning and scheduling
problem in which tasks are assigned to resources and then
scheduled on those resources. The tasks assigned to a
given resource can run concurrently so long as the total rate
of resource consumption never exceeds a given maximum
(cumulative scheduling). The assignment problem is solved
by MIP and the scheduling problem by CP.

Previous Work
Logic-based Benders decomposition was introduced by
Hooker (1995) and Hooker and Yan (1995), and a general
theory was presented in Hooker (2000) and Hooker and
Ottosson (2003). A guide to applying LBBD to planning
and scheduling problems is provided in Hooker (2007b) and
Hooker (2012).

Classical Benders decomposition derives Benders cuts
from dual or Lagrange multipliers in the subproblem (Ben-
ders 1962; Geoffrion 1972). However, this presupposes that
the subproblem is a linear or nonlinear programming prob-
lem. Logic-based Benders decomposition has the advantage
that Benders cuts can, at least in principle, be obtained
from a subproblem of any form by solving its inference
dual (Hooker 1996). The solution of the dual is a proof of
optimality for fixed values of the master problem variables
(whence the name “logic-based”). The core idea of Benders
decomposition is that this same proof may establish a bound
on the optimal value when the master problem variables take
other values. The corresponding Benders cut enforces this
bound in the master problem.

Logic-based Benders cuts must be designed specifically
for each class of problems, but this provides an opportu-
nity to exploit problem structure. The Benders framework
is also natural for combining MILP and CP, because one
method can be used to solve the master problem and the
other the subproblem. This is particularly advantageous
when the subproblem is a scheduling problem, for which CP
methods are well suited (Baptiste, Pape, and Nuijten 2001;
Hooker 2007a). The combinatorial nature of the scheduling
problem is no longer a barrier to generating Benders cuts.

The computational advantages of LBBD have been
demonstrated in a number of studies, including Benini et
al. (2005), Cambazard et al. (2004), Chu and Xia (2004),
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Çoban and Hooker (2013), Corréa, Langevin, and Rousseau
(2004), Fazel-Zarandi and Beck (2009), Harjunkoski and
Grossmann (2001; 2002), Hooker (2004; 2005a; 2005b;
2006; 2007b), Jain and Grossmann (2001), Maravelias and
Grossmann (2004), Terekhov, Beck, and Brown (2007),
Thorsteinsson (2001), Timpe (2002), and Yunes, Aron, and
Hooker (2010).

We presented some of the computational results given
here at a recent CPAIOR conference (Ciré, Çoban, and
Hooker 2013). In this paper we present more detailed
results, including performance profiles, iteration counts, a
computation time breakdown by master and subproblem,
and the peformance of Benders cuts without a subproblem
relaxation. We also analyze the implications of these results.

Fundamentals
Logic-based Benders decomposition is based on the concept
of an inference dual. Consider an optimization problem

min f(x)

C(x)

x 2 D

(1)

where C(x) represents a constraint set containing variables
x, and D is the domain of x (such as Rn or Zn). The
inference dual is the problem of finding the tightest lower
bound on the objective function that can be deduced from
the constraints:

max v

C(x)

P

` (f(x) � v)

v 2 R, P 2 P
(2)

Here C(x)

P

` (f(x) � v) indicates that proof P deduces
f(x) � v from C(x). The domain of variable P is a family
P of proofs, and the dual solution is a pair (v, P ). When the
primal problem (1) is a feasibility problem with no objective
function, the dual can be viewed as the problem finding a
proof P of infeasibility.

If problem (1) is a linear programming (LP) problem
min{cx | Ax � b, x � 0}, the inference dual becomes the
classical LP dual (assuming feasibility) for an appropriate
proof family P . Namely, each proof P corresponds to a
tuple u � 0 of multipliers, and P deduces the bound cx � v

when the surrogate uAx � ub dominates cx � v; that is,
uA  c and ub � v. The dual therefore maximizes v subject
to uA  c, ub � v, and u � 0. Equivalently, it maximizes
ub subject to uA  c and u � 0, which is the classical LP
dual.

Logic-based Benders decomposition applies to problems
of the form

min f(x, y)

C(x, y)

x 2 D

x

, y 2 D

y

(3)

Fixing x to x̄ defines the subproblem
min f(x̄, y)

C(x̄, y)

y 2 D

y

(4)

Let proof P solve the inference dual of the subproblem
by deducing the bound f(x̄, y) � v

⇤. A Benders cut
v � B

x̄

(x) is derived by identifying a bound B

x̄

(x) that the
same proof P deduces for any given x. Thus, in particular,
B

x̄

(x̄) = v

⇤. The kth master problem is

min v

v � B

x

i
(x), i = 1, . . . , k � 1

x 2 D

x

(5)

where x1
, . . . , x

k�1 are the solutions of the first k�1 master
problems. If the subproblem is a feasibility problem with
no objective function, the Benders cut is a constraint that
excludes x̄ and perhaps other solutions that proof P shows
to be infeasible.

At this point we solve the master problem and set x̄ equal
to an optimal solution of the master, whereupon the process
repeats. The algorithm terminates when the optimal value v

k

of the master problem is equal to the minimum of B
x

i
(x

i

)

over i = 1, . . . , k. At any stage of the algorithm, v
k

is a
lower bound on the optimal value of (3), and each B

x

i
(x

i

)

is an upper bound.
Classical Benders decomposition is the result of applying

logic-based Benders decomposition to a problem of the form

min f(x) + cy

g(x) +Ay � b

x 2 D

x

, y � 0

(6)

The subproblem is an LP:

min f(x̄) + cy

Ay � b� g(x̄)

y � 0

(7)

whose inference dual is the LP dual. Its solution u defines a
surrogate uAy � u(b � g(x̄)) that dominates cy � v

⇤ and
therefore deduces that f(x̄) + cy � f(x̄) + u(b � g(x̄)).
The same u deduces f(x) + cy � f(x) + u(b � g(x)) for
any x, and we have the classical Benders cut v � f(x) +

u(b�g(x)). When the subproblem is infeasible, the dual has
an extreme ray solution u that proves infeasibility because
uA  0 and u(b� g(x)) > 0. The Benders cut is therefore
u(b� g(x))  0.

In practice, the solution of the subproblem inference dual
is the proof of optimality obtained while solving the sub-
problem. The simplest type of Benders cut is a nogood cut,
which states that the solution of the subproblem cannot be
improved unless at least one x

j

is fixed to a different value.
This yields a nogood cut

v �
⇢

v

⇤ if x
j

= x̄

j

for all j 2 J

�1 otherwise (8)

where J is the index set for the x

j

s. If the subproblem is
infeasible, the nogood cut states simply that x

j

6= x̄

j

for
some j 2 J .

Nogood cuts can be strengthened in various ways. The
simplest examines the dual proof and observes that only the
variable settings x

j

= x̄

j

for j 2 ¯

J appear as premises. This
yields a strengthened nogood cut by replacing J with ¯

J in
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(8). If the dual proof is not accessible, we can strengthen
the cuts by re-solving the subproblem when some of the
premises x

j

= x̄

j

are dropped, and checking whether the
optimal subproblem value is the same. Further analysis of
the optimality proof may yield analytic Benders cuts that
provide useful bounds when x

j

6= x̄

j

for some of the j 2 J .

LBBD for Planning and Scheduling
The problem is to assign each of n tasks to one of m

resources so as to minimize cost, subject to the condition that
the tasks assigned to each resource can be feasibly scheduled
on that resource. Each task j must be processed within time
window [L

j

, U

j

], has processing time p

ij

on resource i, and
consumes resource i at the rate r

ij

. The total rate of resource
i consumption can be at most L

i

. It is assumed that there is
a fixed cost c

ij

for processing task j on resource i.
The master problem variables x become binary variables

�

ij

, where �
ij

is 1 when task j is assigned to resource i. The
master problem (5) is

min

X

ij

c

ij

�

ij

X

i

�

ij

= 1, j = 1, . . . , n

Benders cuts
Subproblem relaxation
�

ij

2 {0, 1}, all i, j

(9)

The subproblem decouples into a separate scheduling prob-
lem for each resource. The subproblem variables y are the
start time s

j

of task j. Let J
i

be the set of tasks assigned
to resource i in the solution of the master problem. Let
the constraint cumulative(s, p, r, R) require that tasks be
scheduled at start times s = (s1, . . . , sk) so that the resource
consumption rate never exceeds R. The subproblem for
resource i is the feasibility problem
L

j

 s

j

 U

j

� p

ij

, all j 2 J

i

cumulative((s
j

, j 2 J

i

), (p

ij

, j 2 J

i

), (r

ij

, j 2 J

i

), R

i

)

(10)
We generate a Benders cut for each resource for which

the assignment is infeasible. A simple nogood cut is as
described above, which in the present context becomes

X

j2Ji

(1� �

ij

) � 1 (11)

Stronger cuts would ideally be obtained by examining the
proof of infeasibility when the subproblem is solved. For
example, if infeasibility is proved by edge finding (Baptiste,
Pape, and Nuijten 2001), or edge finding plus branching, one
could observe the set ¯

J

i

of tasks that actually play a role in
the proof, and replace J

i

with ¯

J

i

in (11). Unfortunately, this
kind of information is not available from the commercial CP
software used to solve the scheduling problem. We therefore
strengthen the nogood cut heuristically as indicated earlier.
We remove elements from J

i

one at a time and re-solve the
subproblem until the scheduling problem becomes feasible.
We then restore the last element removed, and the result-
ing ¯

J

i

becomes the basis for the strengthened nogood cut
(Hooker, 2005a; 2007c).

We also tighten the master problem (9) with a relaxation
of the subproblem. We use a very simple relaxation that re-
quires that the processing times of tasks assigend to resource
i fit between the earliest release time and the lastest deadline:

X

j

p

ij

�

ij

 max

j

{U
j

}�min

j

{L
j

}

The subproblem is a feasibility problem because we are
minimizing assignment cost only. An optimal solution is ob-
tained as soon as the assignment is feasible on all resources.
As a result, the Benders method yields no upper bound on
the optimal value until it terminates with an optimal solution.
This is not the case with other common objectives, such
as minimizing makespan, minimizing the number of late
tasks, or minimizing total tardiness. These objectives result
in subproblems that are optimization problems, and they
require different (and more complex) Benders cuts and sub-
problem relaxations. They are discussed in Hooker (2005a;
2007c).

Computational Results
The problem instances are those used in Hooker (2004;
2005a; 2007c) and elsewhere. The instances and full doc-
umentation are available at

http://web.tepper.cmu.edu/jnh/instances.htm

They consist of “c” instances, which schedule 10 to 32 tasks
on 2 to 4 resources, and “e” instances, which schedule 10 to
50 tasks on 2 to 10 resources.

The “c” instances are designed to be difficult for LBBD,
because the processing times on different resouces differ by
as much as a factor of m when there are m resources. This
causes many more tasks to be assigned to the more efficient
resources, which results in a computational bottleneck on
those resources. There are also fewer resources, resulting
in less decoupling of the subproblem. The “e” instances are
more suited to LBBD, even though they are larger. Process-
ing times differ by at most a factor of 1.5 across resources, so
that the load is more evenly (and perhaps more realistically)
balanced.

We implemented LBBD by solving the master problem
with CPLEX 12.4.01 and the subproblems with IBM CP
Optimizer 12.4.01 using extended filtering, DFS search, and
default variable and value selection. We also solved the
instances by pure MIP, using the best known formulation
and CPLEX 12.4.01. We did not solve the instances with
pure CP, because previous experience indicates that CP
solvers are considerably slower than MIP on these instances
(Hooker 2005a; 2007c). All tests are run on an Intel Xeon
E5345 2.33 GHz (64 bits) in single core mode with 8 GB
RAM.

Table 1 shows our results for the “c” instances. LBBD is
clearly superior to MIP, running at least 1000 times faster
on the larger instances with more than 2 resources. The ad-
vantage is less pronounced when there are only 2 resources,
which is not surprising because there is less decoupling of
the subproblem. The superiority of LBBD is equally evident
in the performance profile of Fig. 1.
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Table 1: Computational results for the “c” instances, which
are designed to be difficult for logic-based Benders decom-
position (LBBD). n tasks are scheduled on m resources. The
number of problem instances solved (out of 5) and average
computation time in seconds are shown. Results are shown
for the CPLEX MIP solver, LBBD with strengthened cuts
but no subproblem relaxation in the master problem, LBBD
with a relaxation and simple nogood cuts, and LBBD with a
relaxation and strengthened cuts.

Size MIP LBBD: strong LBBD: relax LBBD: relax
(CPLEX) cuts only + weak cuts + strong cuts

m n Solved Sec Solved Sec Solved Sec Solved Sec

2 10 5 0.1 5 0.2 5 0.1 5 0.1
12 5 0.2 5 0.2 5 0.1 5 0.0
14 5 0.1 5 0.4 5 0.1 5 0.0
16 5 28 5 2.0 5 0.2 5 0.3
18 5 388 5 19 5 0.5 5 0.7
20 4 1899 5 120 5 2.0 5 8.0
22 3 3844+ 4 1852+ 5 617 5 955
24 2 4346+ 1 6341+ 4 1495+ 4 1936+
26 1 6362+ 0 - 5 327 4 1642+
28 2 4384+ 0 - 5 1004 5 1133
30 0 - 0 - 2 5391+ 2 5761+
32 1 5813+ 0 - 2 4325+ 2 4325+

3 10 5 0.0 5 0.2 5 0.1 5 0.1
12 5 0.1 5 0.4 5 0.5 5 0.1
14 5 0.3 5 1.2 5 0.3 5 0.2
16 5 13 5 5.6 5 2.7 5 0.8
18 5 548 5 22 5 7.8 5 1.4
20 4 1712+ 5 30 5 1.2 5 0.5
22 3 3674+ 5 59 5 7.5 5 2.6
24 2 4411+ 4 1739+ 5 15 5 5.7
26 0 - 4 3510+ 5 191 5 98
28 2 5238+ 2 6645+ 5 270 5 209
30 0 - 0 - 4 2354+ 4 1856+
32 0 - 0 - 2 4667+ 2 4751+

4 10 5 0.0 5 0.1 5 0.0 5 0.0
12 5 0.1 5 0.2 5 0.1 5 0.1
14 5 0.3 5 0.6 5 1.0 5 0.3
16 5 1.0 5 0.6 5 0.4 5 0.1
18 5 36 5 4.0 5 1.7 5 0.4
20 5 523 5 11 5 1.1 5 0.3
22 5 811 5 75 5 8.2 5 1.1
24 1 6292+ 5 122 5 23 5 9.1
26 0 - 3 3369+ 5 19 5 7.4
28 1 5762+ 3 4623+ 5 36 5 11
30 0 - 2 4841+ 5 430 5 61
32 0 - 0 - 5 680 5 478

+ Computation terminated after 7200 sec for instances not solved to
optimality. In cases where CPLEX terminated prematurely due to lack
of memory, the computation time was set at 7200 sec when computing
the average time for CPLEX.

The superiority of LBBD is even clearer for the “e”
instances, as revealed in Table 2 and the performance profile
in Fig. 2.

The importance of the subproblem relaxation is equally
evident in the results. If strengthened nogood cuts are used
without a relaxation, the advantage of LBBD is substantially
reduced, and it disappears completely in some instances.

Table 2: Computational results for the “e” instances.

Size MIP LBBD: relax LBBD: relax
(CPLEX) + weak cuts + strong cuts

m n Solved Sec Solved Sec Solved Sec

2 10 5 0.1 5 0.1 5 0.1
2 12 5 0.3 5 0.3 5 0.1
3 15 5 0.9 5 0.4 5 0.2
4 20 5 46 5 14 5 1.9
5 25 5 73 5 1.0 5 0.7
6 30 5 543 5 1.3 5 0.4
7 35 2 5122+ 5 36 5 2.7
8 40 1 7246+ 4 1527+ 5 80
9 45 0 - 5 1050 5 35

10 50 1 6983+ 5 45 5 5.4

+ Computation terminated after 7200 sec for instances not
solved to optimality.

Strengthening of the nogood cuts, however, is not always
effective. It actually worsens performance in “c” instances
with 2 resources, and it brings rather limited improvement
in the overall performance profile. Even when the instances
with 2 resources are removed from the profile, as in Fig. 3,
the effect of strengthening is not as great as one might
expect. On the other hand, cut strengthening is significantly
more effective in the “e” instances, as is evident in Fig. 2.

Analysis of Results
More detailed computational data can shed light on the
results described above. Tables 3 and 4 show the average
number of iterations for each instance size, as well as a
breakdown of the average solution times by master problem
and subproblem.

We can immediately see the effect of the subproblem
relaxation. The lack of a relaxation results in a dramatic
increase in the number of iterations and therefore in the
solution time. This is intuitively reasonable, because a
Benders method in effect computes the projection of the
feasible set onto the master problem variables. As more
Benders cuts are added, the projection is more accurately
described. Eventually, enough cuts are added to describe
the projection completely, and the problem can be solved
by solving only the master problem. It is impractical to
generate so many cuts, however, and the effectiveness of
the Benders method rests on the fact that cut generation is
guided by interim solutions of the master problem. Cuts tend
to be generated only in the vicinity of the optimal solution,
and this is enough to solve the problem. A relaxation of the
subproblem is useful because it more tightly circumscribes
the projection from the start, so that many fewer cuts are
necessary to chip away regions near the optimum that are
not part of the projection.

The absence of a relaxation not only generates more
iterations, but each iteration requires longer to solve. This is
because more iterations produce more Benders cuts, which
makes the master problem larger and harder to solve. The
tables suggest that a successful application of the Benders
method tends to result in well under 100 iterations. After
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Table 3: Computational analysis of logic-based Benders
decomposition for “c” instances, showing the average num-
ber of iterations and the average computation time spent
solving master problems and subproblems.

Strong cuts only Relax + weak cuts Relax + strong cuts
Iters Master Subpr Iters Master Subpr Iters Master Subpr

m n sec sec sec sec sec sec

2 10 18 0.1 0.1 9.8 0.1 0.0 4.8 0.0 0.0
12 13 0.1 0.1 5.0 0.0 0.0 3.4 0.0 0.0
14 19 0.1 0.3 1.8 0.0 0.0 1.8 0.0 0.0
16 41 0.5 1.5 2.0 0.0 0.2 2.0 0.0 0.3
18 149 5.7 14 2.4 0.0 0.5 2.4 0.0 0.7
20 107 3.5 117 3.6 0.0 2.0 2.8 0.0 8.0
22 340+ 70+ 1782+ 4.6 0.0 617 4.4 0.0 955
24 327+ 67+ 6263+ 2.0+ 0.0+ 1495+ 1.8+ 0.0+ 1936+
26 - - - 1.8 0.0 327 1.6+ 0.0+ 1642+
28 - - - 2.0 0.0 1004 1.8 0.0 1133
30 - - - 4.2+ 0.0+ 5391+ 1.0+ 1452+ 4309+
32 - - - 1.2+ 0.0+ 4325+ 1.0+ 0.0+ 4325+

3 10 13 0.0 0.1 9.8 0.1 0.0 4.4 0.0 0.0
12 23 0.2 0.2 14 0.4 0.0 6.4 0.1 0.1
14 42 0.7 0.5 13 0.2 0.1 6.8 0.1 0.1
16 86 4.0 1.5 40 2.5 0.2 17 0.5 0.3
18 183 19 3.0 61 7.3 0.5 23 1.0 0.5
20 226 23 6.4 21 0.8 0.4 8.2 0.1 0.4
22 340 49 10 49 2.9 4.6 16 0.4 2.3
24 1222+ 1689+ 50+ 55 12 3.5 22 1.6 4.1
26 1854+ 2723+ 786+ 130 33 158 22 0.6 97
28 2113+ 3283+ 3363+ 15 0.2 270 8.0 0.1 209
30 - - - 80+ 9.2+ 2344+ 21+ 1.1+ 1855+
32 - - - 143+ 64+ 4602+ 23+ 1.7+ 4750+

4 10 6.8 0.0 0.1 4.6 0.0 0.0 3.0 0.0 0.0
12 12 0.1 0.1 6.2 0.1 0.0 4.4 0.0 0.0
14 26 0.3 0.3 22 0.9 0.1 9.0 0.2 0.1
16 27 0.2 0.3 12 0.3 0.1 5.6 0.1 0.1
18 74 3.0 1.0 32 1.5 0.1 15 0.3 0.2
20 130 9.0 2.3 26 1.0 0.2 11 0.1 0.2
22 334 69 6.6 51 7.6 0.6 15 0.7 0.5
24 407 104 18 96 20 3.1 37 3.4 5.6
26 1351+ 3315+ 54+ 83 11 7.5 32 2.0 5.4
28 2042+ 4091+ 532+ 27 1.7 34 12 0.5 11
30 1408+ 4665+ 175+ 117 395 35 41 41 20
32 - - - 60 6.3 673 14 0.4 478

+Computation terminated for unsolved instances after the total computation time
reaches 7200 sec.

this point, solution of the master bogs down, and the method
tends to fail.

The results also reveal why the “c” instances are harder
for LBBD. Once the number of tasks reaches a certain
point, the subproblem solution time explodes, even while
the master problem solution time remains small. This point
is reached earlier when there are fewer resources, indicat-
ing that the key factor is the average number of tasks per
resource. In fact, the break point is about 10 tasks per
resource. Due to the uneven loads, this places subtantially
more than 10 tasks on the fastest resource, whereupon the
CP problem becomes highly combinatorial, and solution
time explodes. This phenomenon does not occur in the “e”

Table 4: Computational analysis of logic-based Benders
decomposition for “e” instances.

Relax + weak cuts Relax + strong cuts
Iters Master Subpr Iters Master Subpr

m n sec sec sec sec

2 10 9.4 0.1 0.0 5.2 0.0 0.0
2 12 13 0.3 0.0 4.4 0.0 0.0
3 15 14 0.4 0.0 5.6 0.1 0.1
4 20 55 14 0.0 16 1.7 0.3
5 25 19 0.4 0.0 8.6 0.1 0.6
5 30 26 1.1 0.0 8.8 0.2 0.2
7 35 76 34 0.0 19 2.0 0.7
8 40 107+ 1525+ 0.0+ 31 78 2.1
9 45 132 1048 0.0 39 33 2.2

10 50 39 43 0.0 18 3.6 1.7

+Computation terminated for unsolved instances after the total
computation time reaches 7200 sec.

instances, where there are only 5 tasks per resource, and the
resource loads are more evenly balanced.

From a broader perspective, the “c” instances are less
suitable for LBBD because the assignment problem is rel-
atively easy when there are only 2 or 3 resources. Most of
the combinatorial complexity is relegated to the scheduling
subproblem, which can quickly become intractable as the
instances scale up. In the “e” instances, the assignment prob-
lem bears a more equal share of the combinatorial burden.
Decoposition is more effective because the labor is more
equally shared between master and subproblem.

It is less obvious how the effect of cut strengthening can
be explained, but a pattern is visible. We first observe that
strong cuts tend to result in greater subproblem solution time
per iteration, because the subproblem is solved repeatedly
in each iteration to tighten the cuts. However, this tends
to be more than offset by the smaller number of iterations.
As one might expect, stronger cuts remove more solutions
that lie outside the projection, and fewer cuts are therefore
necessary. The key observation is that when there are
fewer resources relative to tasks, the subproblem relaxation
already substantially reduces the number of iterations. This
means that there is less room for further reduction due to
strong cuts. This is particularly evident in the “c” instances
with only 2 or 3 resources (Table 3).

The data further suggest that cut generation should result
in a rough balance between the total master solution time
and the total subproblem solution time. This is particularly
evident for the “e” instances (Table 4), for which weak cuts
result in nearly zero subproblem solution time, while strong
cuts roughly equalize the master and subproblem time in
most cases. LBBD is somewhat less efficient for instances
with 8 and 9 resources, for which the master solution time
is significantly greater than the subproblem time. This sug-
gests that one should invest more time to generate stronger
cuts for these instances.
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Figure 1: Performance profile for all 180 “c” instances.

Conclusions
Based on the experiments described above, we conclude that
logic-based Benders decomposition is more effective when
the problem in fact decomposes. The planning and schedul-
ing components should both embody substantial shares of
the problem’s combinatorial complexity.

When the planning portion involves the assigment of
tasks to resources, the average number of tasks per resource
should be small enough that the assignment problem is
roughly as hard as the scheduling problem. In particular,
it should remain below the threshold at which solution time
of the scheduling problem tends to explode. LBBD failure
most often occurs when the CP solver blows up because of
too many tasks are assigned to the resource. This is less
likely to occur when no resource is significantly faster than
others.

We also find that the most effective technique for reducing
solution time is to include a relaxation of the subproblem
in the master problem. This can dramatically reduce the
number of iterations, as well as the solution time per iter-
ation, because the master problems are smaller when there
are fewer iterations.

The identification of stronger cuts can also significantly
reduce the number of iterations, especially when the master
and subproblem complexity are properly balanced. A rough
guideline is to invest greater time in identifying strong cuts
when the subproblem solution time per Benders iteration is
less than the master problem solution time.

In any event, LBBD remains substantially faster than
state-of-the art mixed integer programming on the problem
class studied here. This is despite the marked improvement
of MIP solvers, already highly advanced, over the last few
years. The advantage exceeds a factor of 1000 for larger
instances. In fact, the LBBD method presented here is
best conceived as an enchancement of MIP rather than a
competitor, because MIP solves the master problem, and
LBBD will therefore improve as MIP improves. LBBD also
benefits from advancements in CP, used here to solve the
subproblem.

On the other hand, LBBD is likely to fail when the im-
balance or size of the master and subproblem result in more
than 100 Benders iterations.

These results suggest several research directions. When
the number of tasks per resource crosses the CP solver’s
tractability threshold, one option is to solve the scheduling
subproblem with failure-directed search, which was recently
introduced in the IBM CP optimizer. Another option is to
decompose the scheduling problem itself using LBBD. This
can be done by dividing the time horizon into segments and
creating a subproblem for each segment. This approach has
been successfully applied in the context of single-resource
scheduling (Çoban and Hooker 2013).

The overriding importance of a subproblem relaxation
suggests that further research should be conducted in this
area. For example, some of the subproblem constraints
could be incorporated verbatim into the master problem,
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Figure 2: Performance profile for all 50 “e” instances.

along with the subproblem variables that occur within them.
Normally, subproblem variables do not occur in the master,
but their inclusion is consistent with the Benders mechanism
so long as their solution values in the master are discarded
before the next subproblem is solved. Their presence in the
master serves only to restrict the possible values of the mas-
ter variables. This strategy has been applied in a Benders-
based solution of the home health care delivery problem
(Ciré and Hooker 2012). A practice of decomposing prob-
lems while allowing the components to intermingle could
lead to a research program that improves decomposition
methods in general.

One characteristic of LBBD not exploited here is that
the subproblem is easily parallelized by assignining each
facility to a different processor. This could be a significant
advantage if there are a large number of facilities, or if the
scheduling subproblem is itself decomposed.

Finally, the generation of strong Benders cuts could bene-
fit from access to dual information in the subproblem solver.
That is, the solver should report how it proved optimality
or infeasiblity. The cuts used here were strengthened by
reperatedly re-solving the subproblem to tease out dual in-
formation, but cuts based on the actual dual solution could
be much more effective.
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Abstract

Space applications are demanding for complex oper-
ation and safety constraints and contain many objec-
tives. This demand is even stronger for human space-
flight missions such as the International Space Station
(ISS). This paper describes a novel approach to plan
and schedule solar array operations on the ISS in a safe
and effective manner. Opposite to previous approaches,
it assumes global optimization while still taking in ac-
count safety and operation constraints. The paper pro-
poses a constraint model to describe the problem for-
mally and discusses methods to solve the model.

Introduction
Automated planning and scheduling deal with the problem
of deciding which activities are necessary to reach the goal
(planning) and when and where these activities should be
executed (scheduling). These two tasks can be decoupled but
if planning and scheduling are closely interconnected then
it is more appropriate to solve both tasks together. In this
paper we present an integrated constraint-based planner and
scheduler to generate schedules for solar array operations on
the International Space Station (ISS).

Solar arrays at the ISS are designed to automatically track
the sun, which is what they do most of the time. However,
some ISS operations such as docking a spacecraft, extra ve-
hicular activities, water dumps, thruster firings etc. impose
additional constraints on solar array operations to prevent
thermal stresses, environmental contamination, and struc-
tural loads. In such situations, solar arrays may need to be
parked or even locked/latched, which must be planned in
advance according to expected operations of the ISS.

Currently, the solar array planning problem is solved man-
ually by a team of people known as PHALCONs (Power,
Heating, and Lighting Controllers). It takes about four
weeks to manually produce an ISS solar array operations
plan for a typical four-week planning horizon. The Solar
Array Constraint Engine (SACE) was proposed to automat-
ically generate solar array operations plans subject to all
operation constraints and user-configurable solution prefer-
ences (Reddy et al., 2011). The SACE uses an approach sim-
ilar to manual scheduling with left-to-right greedy schedul-
ing. The advantage is tractability of sub-problems solved,

but in principle the schedule is suboptimal and may not be
found at all even if a feasible plan exists.

In this paper we propose a constraint-based optimizer for
scheduling solar array operations (COSSA) that does global
optimization. In particular, we formulate the problem as a
constraint satisfaction problem where the planning compo-
nent is modeled using optional activities with possibly zero
durations. The problem formulation is taken mainly from
the challenge domain at the International Competition on
Knowledge Engineering for Planning and Scheduling 2012
(Frank, 2012). Our approach and the SACE are the only two
automated planners for this domain.

We first introduce the solar array operations planning do-
main and highlight the properties of the SACE approach.
Then we describe our method in detail and discuss suggested
solving techniques for the constraint model. Finally, we ex-
perimentally evaluate the proposed model and compare it
with our implementation of the SACE method.

The Problem and Existing Approaches
This section sketches the main parts of the problem solved;
full details can be found in (Frank, 2012; Reddy et al., 2011).

The ISS has eight solar arrays, each of which is mounted
on a rotary joint called the Beta Gimbal Assembly (BGA).
The solar arrays are split into two groups each of which con-
sists of four solar arrays mounted via the Solar Array Ro-
tary Joint (SARJ) to the station (Figure 1). Thus each panel
has two degrees of rotational freedom, though one degree
of freedom is shared between the panels in the same group.
Each rotary joint can be in exactly one mode: Autotrack,
Park, or Lock (Latch for BGA), or the joint can turn be-
tween the modes. The state of each joint is also described by
the angle of orientation (360 positions).

In the Autotrack mode, the onboard software automati-
cally rotates the panel so its surface is pointing directly onto
the sun to maximize energy generated. In the formal model a
known constant speed of rotation is assumed for this mode.
The Autotrack mode must last at least 90 minutes. In the
Park mode, a drive motor is engaged to maintain the current
array angle, while in the Lock and Latch modes, a physi-
cal barrier is engaged. Transition into and out of Lock/Latch
modes takes 20 minutes.

The input to the solar array planning problem consists of a
sequence of configurations, where each configuration starts
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Figure 1: Solar arrays connected via rotary joints to ISS
(taken from (Frank, 2012)).

when the previous configuration finishes. This time may be
flexible and in such a case the planner decides the appro-
priate time. This is the only situation when the groups of
solar arrays interact; otherwise they can be scheduled inde-
pendently. Each panel can be in exactly one mode in each
configuration. The configuration also determines whether
turning is disallowed (docking, undocking, reboost, maneu-
ver), allowed at the end of the configuration (approach, prop
purge, water dump), or allowed both at the beginning and
at the end (attitude hold). It also defines a maximum rota-
tion speed for SARJs (it is fixed for BGAs) and a contin-
gency mode when some constraints can be violated. Finally,
there are other parameters of the configuration determining
for a pair of BGA and SARJ a set of four soft constraints:
Power Generation (P), Structural Load (L), Environmental
Contamination (E), and Longeron Shadowing (S). Each of
these constraints is expressed as a 360× 360 table (Figure 2)
with three types of values: Green (preferred/best), Yellow
(acceptable), and Red (infeasible in most situations/worst).
The table is used as follows. If both BGA and SARJ are
parked or locked/latched at some orientations then the value
of the constraint is at the intersection of row and column cor-
responding to the orientations. If BGA (SARJ) is autotrack-
ing and SARJ (BGA) is parked or locked then the value of
the constraint is the worst value in a row (column) defined
by the orientation of SARJ (BGA). If both BGA and SARJ
are autotracking then the value of the constraint is the worst
value in the whole table. It is not allowed to use orientations
with the red value for P, L, and S tables. Red value is allowed
for the E table, but it is reflected in the quality of the plan.
Turning of BGA can start only after turning of its SARJ fin-
ished and all BGAs (for a given SARJ) must start turning
at the same time. The above tables are not assumed during
turning.

The task is to determine for each joint in each configura-
tion the following sequence of “activities”:

• unlocking – transition out of lock/latch (optional)

• turning to the required orientation (optional)

• being in a selected mode

• turning to the next required orientation (optional)

Figure 2: A table indicating, for one SARJ and one BGA, the
safety areas for rotation angles (taken from (Frank, 2012)).

• locking – transition into lock/latch (optional)

There might be some wait times between the above “activ-
ities”, for example BGA turning waits until SARJ turning
finishes. A joint can be in a selected mode in several con-
secutive configurations to satisfy the minimal duration con-
straint of the mode.

The plans are evaluated using four criteria. The most im-
portant criterion is color in the tables: table S first, then ta-
bles L and E, and finally table P (Figure 3). The second crite-
rion is mode: Autotrack is preferred, followed by Park, and
Lock/Latch to be last. Then, the number of changes in ro-
tations should be minimized (the joint can rotate in positive
and negative directions). Finally, the time spent in turning
should be minimized. We are looking for a schedule such
that no configuration can be scheduled better without wors-
ening the schedule of another configuration. However, it is
not necessary to guarantee the optimality of the found sched-
ule.

SACE
The Solar Array Constraint Engine (SACE) is an automated
planner for the solar array problem that mimics a human
approach (Reddy et al., 2011). The SACE uses left-to-right
scheduling. It decides the best orientation of joints and best
modes in a given configuration (going from left to right).
If this plan is not compatible with the plan from the previ-
ous configuration (not enough time for transition) then both
configurations are merged and a new plan for the merged
configuration is looked for. This also assumes “worst-case”
merge of the table constraints. Then look-ahead is used to
prune infeasible modes for the next configuration. The pro-
cess is repeated until a plan for all configurations is found
(no backtracking to previous configurations is allowed).

The system is based on constraint solving, namely the
SACE is built on top of the AI planning system EUROPA
(Frank and Jónsson, 2003). It exploits the tree structure of
the constraint network to find a plan for a single configu-
ration but due to the configuration merging, the schedule is
suboptimal, and the algorithm could fail to find a valid plan
even if one exists. This is the reason why we propose another
constraint-based approach without these deficiencies.
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0 S L E P 8 S L E P 16 S L E P
1 S L E P 9 S L E P 17 S L E P
2 S L E P 10 S L E P 18 S L E P
3 S L E P 11 S L E P 19 S L E P
4 S L E P 12 S L E P 20 S L E P
5 S L E P 13 S L E P 21 S L E P
6 S L E P 14 S L E P 22 S L E P
7 S L E P 15 S L E P 23 S L E P

Figure 3: Color preferences order.

Constraint Model
This section describes the model used for solar array plan-
ing. First we define necessary variables and constants; then,
we describe an objective function and, finally, we focus on
different sets of constraints.

Variables and Their Domains
First, we describe the representation of the output
plan. For each joint j on the side s in the con-
figuration i we introduce the following variables.
Mi,s,j∈{AUTOTRACK,PARK,LOCK} is a variable
describing the mode of the joint. Each joint is in exactly
one orientation (angle) during modes PARK and LOCK
which is described by variable Oi,s,j∈[0; 360) for the
orientation of the joint. During the mode AUTOTRACK
the orientation changes continuously, so Oi,s,j repre-
sents the orientation at the end of the mode before its
final turning. Each joint can turn at the beginning or
at the end of each configuration, so we have variables
RB

i,s,j , R
E
i,s,j∈(−360; 360) for the angle and direction of

the turning, where RB
i,s,j represents the turning angle at the

beginning and RE
i,s,j represents the turning angle at the end

of the configuration. Variable Ti represents the start time
of the configuration i in minutes (also the end time of the
configuration i− 1).

The input defines the SARJ turn rate Si∈[9; 30] in de-
grees per minute and the type of the event (whether it is
disallowed to turn joints, or to turn joints only at the end,
or to turn joints also at the beginning of the configuration)
Fi∈{NO;END;BOTH} for each configuration i. Both
Si and Fi are constants. The input defines domains of vari-
ables Ti (see above). The last part of the input is the set of
color loss functions ci,s,b(Mi,s,a,Mi,s,b, Oi,s,a, Oi,s,b) →
[0; 23] that for each feasible combination of orientations and
modes of BGA b and corresponding SARJ a on the side s as-
signs a score of its color in the configuration i. This function
combines tables P, L, E, S (Figure 2) with a given color pref-
erence order (Figure 3). It is represented as a table constraint
(Carlsson et al., 1997) defining the quality of schedule.

For each configuration i and side s we used the following
auxiliary variables for the formulation of constraints. DU

i,s,j
denotes how long the joint j must unlock at the beginning
of the configuration. Similarly, DL

i,s,j denotes the time of
locking at the end of the configuration. Both unlocking and
locking take 20 minutes, but the remaining time can prop-
agate from one configuration to the adjacent configuration

if the first one is too short. So domains of DU
i,s,j and DL

i,s,j

are [0; 20]. DB
i,s,j denotes how long the joint j turns at the

beginning of the configuration. Similarly, DE
i,s,j denotes the

time of the turning at the end of the configuration. For each
BGA b, DB

i,s,b = dRB
i,s,b/18e and DE

i,s,b = dRE
i,s,b/18e, be-

cause the BGA turn rate is 18 °/min. So domains of DB
i,s,b

and DE
i,s,b are [0; 20] for all BGAs. For SARJ a, DB

i,s,a =

dRB
i,s,a/Sie and DE

i,s,a = dRE
i,s,a/Sie depends on the SARJ

turn rate Si during the configuration so their domains are
[0; d360/Sie]. DS

i,s,j denotes how long the joint j cannot
turn at the beginning of the configuration. For the SARJ a,
DS

i,s,a depends on the DU
i,s,a so its domain is [0; 20]. For the

BGA b, DS
i,s,b depends also on the DS

i,s,a of the correspond-
ing SARJ a so its domain is [0; 20 + d360/Sie]. DF

i,s,j de-
notes when the joint j must begin with the final turning rela-
tively to the end of the configuration. For the BGA b, DF

i,s,b

depends on the DE
i,s,b and DL

i,s,b so its domain is [0; 40]. For
the SARJ a, DF

i,s,a depends on the DS
i,s,a and DF

i,s,b for all
BGAs b, so its domain is [0; 40 + d360/Sie]. DA

i,s,j denotes
how long the joint i is in the Autotrack mode during the con-
figuration, so its domain is [0;∞]. The last variable is DC

i,s,j
that denotes how long the joint i was in the uninterrupted
Autotrack mode until the end of the configuration, so its do-
main is [0;∞].

Time dependency of variables is shown in Figure 4.

Objective Function
There is no single global objective function given, there are
only partial objective functions fi,s, one for each configura-
tion i and side s. Each of these functions has four parts. The
most important is the cost of colors:

fCi,s =
∑

b
ci,s,b(Mi,s,a,Mi,s,b, Oi,s,a, Oi,s,b).

The second cost function is the cost of the modes:
fMi,s =

∑
j
m(Mi,s,j),

where m is the loss function for modes meeting the condi-
tion m(AUTOTRACK) < m(PARK) < m(LOCK).

The third cost function is the number of changes of direc-
tions fDi,s that depends on Mi−1,s,j , RE

i−1,s,j , RB
i,s,j , Mi,s,j

and RE
i,s,j . There are three positions, where the change of

the direction may occur:
• before the RB

i,s,j : (RE
i−1,s,j > 0 ∧ RB

i,s,j < 0),
or (RE

i−1,s,j < 0 ∧ RB
i,s,j > 0), or (Mi−1,s,j =

AUTOTRACK ∧RE
i−1,s,j = 0 ∧RB

i,s,j < 0);

• before the Mi,s,j : (RB
i,s,j < 0 ∧ Mi,s,j =

AUTOTRACK) or (RE
i−1,s,j < 0 ∧ RB

i,s,j = 0 ∧
Mi,s,j = AUTOTRACK);

• between Mi,s,j and RE
i,s,j :

(Mi,s,j = AUTOTRACK ∧RE
i,s,j < 0).

The least important function is the cost of turning (measured
by the turning angle):

fLi,s =
∑

j
|RB

i,s,j |+ |RE
i,s,j |.
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Figure 4: Time dependency of variables during a single con-
figuration (ordering of activities within a configuration).

The optimal plan of the configuration i at the side s
is the plan with the lexicographically smallest vector
(fCi,s, f

M
i,s , f

D
i,s, f

L
i,s).

Locking & Unlocking Constraints
No joint can be simultaneously locked and unlocked, but the
unlocking time or the locking time can be longer than the du-
ration of the configuration. This restriction is defined using
the constraint:

DU
i,s,j +DL

i,s,j ≤ Ti+1 − Ti ∨DU
i,s,j = 0 ∨DL

i,s,j = 0.

If some joint is locked during the configuration i and if it
isn’t locked in the configuration i + 1, then it must be un-
locked during the first 20 minutes of the configuration i+1.
If the configuration i is too short for unlocking, the remain-
ing unlocking time is propagated to the configuration i+ 1.
These restrictions are represented by the set of constraints:

Mi+1,s,j = LOCK ⇒ DU
i+1,s,j = 0,

(Mi,s,j = LOCK∧Mi+1,s,j 6= LOCK)⇒ DU
i+1,s,j = 20,

(Mi,s,j 6= LOCK ∧Mi+1,s,j 6= LOCK)⇒
DU

i+1,s,j = max{DU
i,s,j − Ti+1 + Ti; 0}.

The situation is symmetric in the case of locking and a sim-
ilar set of constraints is used.

Turning Constraints
The type of event must allow turning, which is modeled as:

Fi = END : RB
i,s,j = 0,

Fi = NO : RB
i,s,j = 0 ∧RE

i,s,j = 0.

The joint cannot turn, if it is locked, i.e.

Mi,s,j = LOCK ⇒ RB
i,s,j = 0 ∧RE

i,s,j = 0.

There must be enough time to execute turning. It is a com-
plex rule that requires some auxiliary variables to express
relationships between individual joints. For the beginning
of the configuration: Turning of SARJ a cannot start earlier

than after the SARJ is unlocked. Turning of any BGA b can-
not start earlier than after finishing turning of corresponding
SARJ a (if SARJ turns at all) and also after all BGAs are
ready as they must start turning at the same time. Formally

DS
i,s,a = DU

i,s,a,

RB
i,s,a = 0 =⇒ DS

i,s,B = max{0, max
b,RB

i,s,b 6=0
DU

i,s,b},

RB
i,s,a 6= 0 =⇒ DS

i,s,B = max{DU
i,s,a +DB

i,s,a,

max
b,RB

i,s,b 6=0
DU

i,s,b}.

For the end of the configuration: first, we compute when all
BGAs must start their turnings relatively to the end of the
configuration; then we can compute when SARJ must finish
its turning (before the BGAs start turning).

DF
i,s,B = max

b,RE
i,s,b 6=0

(DE
i,s,b +DL

i,s,b),

RE
i,s,a = 0 =⇒ DF

i,s,a = DF
i,s,B ,

RE
i,s,a 6= 0 =⇒ DF

i,s,a = max{DL
i,s,a, D

F
i,s,B}+DE

i,s,a.

Finally, it is possible to check whether there is enough time
for turning on each joint. This requirement is expressed by
the following set of constraints:

DU
i,s,j+D

L
i,s,j ≥ Ti+1−Ti =⇒ (DB

i,s,j = 0∧DE
i,s,j = 0),

(DU
i,s,j +DL

i,s,j < Ti+1 − Ti ∧DB
i,s,j = 0 ∧DE

i,s,j > 0)

=⇒ DU
i,s,j +DF

i,s,j ≤ Ti+1 − Ti,

(DU
i,s,j +DL

i,s,j < Ti+1 − Ti ∧DB
i,s,j > 0 ∧DE

i,s,j = 0)

=⇒ DS
i,s,j +DB

i,s,j +DL
i,s,j ≤ Ti+1 − Ti,

(DU
i,s,j +DL

i,s,j < Ti+1 − Ti ∧DB
i,s,j > 0 ∧DE

i,s,j > 0)

=⇒ DS
i,s,j +DB

i,s,j +DF
i,s,j ≤ Ti+1 − Ti.

To strengthen domain filtering, we implemented the above
implication constraints using a single case constraint (Carls-
son et al., 1997) as Figure 5 shows.

The last constraint models that every joint j on the side
with SARJ a finishes turning at the beginning of the item
before any joint starts turning at the end of the item:

max
j
{DS

i,s,j +DB
i,s,j}+DF

i,s,a ≤ Ti+1 − Ti.

Autotrack Constraints
The duration of the Autotrack mode during one configura-
tion must be computed to determine the orientation of the
joint at the end of the configuration. This computation is
similar to the check of the duration of the turning described
in the previous section (Figure 5).

Mi,s,j 6= AUTOTRACK =⇒ DA
i,s,j = 0,

(Mi,s,j = AUTOTRACK ∧DB
i,s,j = 0 ∧DE

i,s,j = 0)

=⇒ DA
i,s,j = Ti+1 − Ti −DU

i,s,j −DL
i,s,j ,
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Figure 5: A graph representation of the case constraints on
the duration of the configuration and computation of DA

i,s,j .
Each node corresponds to a variable defined in the header
(highlighted with the same color). A directed edge restricts
the domain of the variable corresponding to the starting node
of that edge. Additionally, each edge can be labeled with a
linear inequality constraint to be also satisfied.

(Mi,s,j = AUTOTRACK ∧DB
i,s,j = 0 ∧DE

i,s,j > 0)

=⇒ DA
i,s,j = Ti+1 − Ti −DU

i,s,j −DF
i,s,j ,

(Mi,s,j = AUTOTRACK ∧DB
i,s,j > 0 ∧DE

i,s,j = 0)

=⇒ DA
i,s,j = Ti+1 − Ti −DS

i,s,j −DB
i,s,j −DL

i,s,j ,

(Mi,s,j = AUTOTRACK ∧DB
i,s,j > 0 ∧DE

i,s,j > 0)

=⇒ DA
i,s,j = Ti+1 − Ti −DS

i,s,j −DB
i,s,j −DF

i,s,j .

The constraint determining the orientation Oi,s,a of the
SARJ a is following:

Oi,s,a = (Oi−1,s,a+R
E
i−1,s,a+R

B
i,s,a+Si×DA

i,s,a) mod 360.

For the BGA b, the constraint is very similar:

Oi,s,b = (Oi−1,s,b+R
E
i−1,s,b+R

B
i,s,b+18×DA

i,s,b) mod 360.

The Autotrack mode must last at least 90 minutes. This
restriction can be satisfied in several consecutive configura-
tions, i.e.

Mi,s,j 6= AUTOTRACK =⇒ DC
i,s,j = 0,

(Mi,s,j = AUTOTRACK ∧ (DU
i,s,j = 0 ∧DB

i,s,j = 0)

∧(DE
i,s,j = 0 ∧DL

i,s,j = 0))

=⇒ DC
i,s,j = DC

i−1,s,j +DA
i,s,j ,

(Mi,s,j = AUTOTRACK ∧ (DU
i,s,j = 0 ∧DB

i,s,j = 0)

∧(DE
i,s,j > 0 ∨DL

i,s,j > 0))

=⇒ (DC
i−1,s,j +DA

i,s,j ≥ 90 ∧DC
i,s,j = 0),

(Mi,s,j = AUTOTRACK ∧ (DU
i,s,j > 0 ∨DB

i,s,j > 0)

∧(DE
i,s,j = 0 ∧DL

i,s,j = 0))

=⇒ DC
i,s,j = DA

i,s,j ,

(Mi,s,j = AUTOTRACK ∧ (DU
i,s,j > 0 ∨DB

i,s,j > 0)

∧(DE
i,s,j > 0 ∨DL

i,s,j > 0))

=⇒ (DA
i,s,j ≥ 90 ∧DC

i,s,j = 0).

(Mi,s,j = AUTOTRACK ∧DB
i,s,j = 0) ∨DC

i−1,s,j = 0

∨DC
i−1,s,j ≥ 90.

Figure 6 shows the graph for the case constraint that checks
the duration of the Autotrack mode.

Optimization Algorithm
The plan for each configuration i and side s has assigned a
vector of four values (fCi,s, f

M
i,s , f

D
i,s, f

L
i,s) that evaluates its

quality (lexicographically). To evaluate the quality of the
whole plan we need to put together all these quadruples
into a single vector while respecting the priorities within
each quadruple. One option is to simply concatenate these
quadruples in the order of configurations, but this would pri-
oritize the earlier configurations “too much” (fLi,s would be
more important than fCi+1,s). Hence we decided to construct
the global evaluation vector by putting first the values fCi,s
for all configurations and sides, then the values fMi,s followed
byfDi,s and finally fLi,s. We have chosen this option, because
the achievable color depends on the duration of turning non-
linearly and because a small change in the duration of turn-
ing can result in a significant difference in the achievable
color. This approach should result in less stress on solar pan-
els.

Now we describe, how the multi-criteria optimization is
realized to get the lexicographically best solution. First we
find an optimal solution (assignment of all variables) for the
first objective function. Then we solve the problem again,
but with an extra constraint binding the value of the first
objective function to the just computed optimum and opti-
mizing the second objective function etc. until all functions
are optimized. This way we find the lexicographically best
solution. So for every extended problem at this level of ab-
straction there exists a solution, if the first search iteration
was successful. Consequently it is possible to interrupt the
algorithm at any time and get at least a partially optimized
plan, if it isn’t enough time for full optimization.

Optimization of a Single Objective
Branch and bound method (Land and Doig, 1960) is used
to find an optimal solution for a given objective function.
First, any solution is found. Then the algorithm is looking
for another solution that is better than the last found solution
until this extended problem has no solution or until the lower
bound of that function is reached. It is possible to use sub-
optimal solutions if finding the optimal solution (or proving
its optimality) is too computationally expensive. Therefore
all iterations are running with a time limit.

Proceedings of the Workshop on Constraint Satisfaction Techniques for Planning and Scheduling Problems (COPLAS-15)

34



{P
ar

k;
 L

oc
k}

{A
utotrack}

[0
; 

40
]

{0}

[1; ∞]

[1; ∞]

{0}

{0}

DC
i,s,j

 = DC
i-1,s,j

+DA
i,s,j

DC
i-1,s,j

+DA
i,s,j

 ≥ 90

DC
i,s,j

 = DA
i,s,j

M
i,s,j

DU
i,s,j

DE
i,s,j

DC
i,s,j

[1; 20]

{0}

[1
; 4

0]

{0}

[0
; 

20
]

[1; 20]

{0}{0}
[1

; 4
0]

{0}

[1
; 2

0]
{0}

DB
i,s,j

DL
i,s,j

[0
; 

40
]

[0
; 

20
]

[0
; 

20
]

[0
; 

20
]

[0
; 

40
]

[1
; 4

0]

{0
} 
∪

 [
90

; 
∞

]

{0}

DA
i,s,j DC

i-1,s,j

[9
0;

 ∞
]

[1
; 
∞

]
[1

; 
∞

]

[0
; 
∞

]

Figure 6: A graph representation of the case constraint on the duration of the Autotrack mode.

When searching for the solution, classical methods for
solving CSPs are used, that is, labeling of variables via
depth-first search with maintaining consistency. Various
variable ordering heuristics and branching schemes can be
used during labeling. Different strategies can have different
success rates and runtimes in different situations. Therefore
we don’t use one fixed strategy, but we exploit a set of strate-
gies.

During optimization of each objective function (except
the first one) the value of the current objective function from
the last solution found during optimization of the previous
objective function is used as the first upper bound of the cur-
rent objective function. That is possible because no infeasi-
ble constraints have been added – in the worst case we prove
optimality of the previous solution according to the current
objective function

When an objective function is optimized for the first time,
no search is necessary if its upper bound is equal to its lower
bound. This saves time, because the evaluation of the func-
tion on the known plan is faster than finding the whole plan.
The method for determining the lower bound depends on the
type of the optimized function.

• Optimization of fCi,s: 0 is the lower bound for the first it-
eration. It is because in our tests in the most cases there
exists an orientation with all color values equal to 0 (see
Figure 3). If the first iteration is stopped due to a timeout
(i.e. optimality of the solution isn’t proved), we create a
new problem which is composed only of the configura-
tion i and the side s. Then we find an optimal value of
fCi,s for this small problem. The optimal value from this
small problem defines a new lower bound in the full prob-
lem (computation of the optimal value of the plan for one
configuration is significantly easier than computing opti-
mal values in larger plans).

• Optimization of fMi,s : The lower bound is computed before
the first optimization. The method of the computation is
similar to the previous case. The only difference is that the

fixed value of corresponding fCi,s should be taken into ac-
count during optimization of the small problem, because
fCi,s is optimized prior to fMi,s and because the constraint
on the value of fCi,s doesn’t allow the Autotrack mode un-
less all tables are monochromatic.

• Optimization of fDi,s and optimization of fLi,s: 0 is set as
the lower bound, because the complete calculation of the
lower bound is too time-consuming.

Simplified Models
Solar array planning is a hard problem so we used simplified
models which speed up the optimization without significant
restriction of the solution space. The simplification of the
model is obtained by additional constraints, so every solu-
tion in this simplified model is also a solution of the origi-
nal problem. However, the optimal solution in the simplified
model may not be optimal in the original model. So the op-
timal solution from the simplified model must be validated,
i.e., the solution quality serves as the upper bound in the full
model. This validation has higher success rate than search
from scratch in the full model. We used the following two
simplified models.

Our experiments showed that the Autotrack mode has the
biggest influence on the difficulty of the problem. It is be-
cause this mode causes the orientation at the beginning of
the configuration to be different from the orientation at the
end and these differences are much harder to predict than
differences caused by turnings. Functions fCi,s are optimized
first and they don’t take modes into account, so we can omit
the Autotrack mode during optimization of fCi,s. It cannot be
omitted later, because the Autotrack mode is the best rated
mode during optimization of fMi,s and because functions fMi,s
are optimized prior to fDi,s and fLi,s. This omission can be
done because in most cases the result of the Autotrack mode
is the same as the result of the Park mode with turning, and
because if turning is prohibited, there is a high chance that
the Autotrack mode will be prohibited too.
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During turning, each orientation (except the initial orien-
tation) can be achieved in two ways: (a) turning in the posi-
tive direction by angle α, and (b) turning in the negative di-
rection by angle 360−α. A simplified model can have each
orientation accessible in only one way. It can be enforced in
two ways:

• The negative direction is prohibited, i.e.,Rx
i,s,j ≥ 0. Sym-

metrically it would be possible to prohibit the positive di-
rection, but the negative direction causes changes of di-
rections in contrast with the positive direction.

• The angle of turnings is restricted to interval [0; 180], i.e.,
|Rx

i,s,j | ≤ 180. One position is still accessible in two ways
– if the angle of turning is 180◦, it doesn’t matter whether
the direction is positive or negative. However, restriction
of the angle to [0; 180) in one direction showed to be less
effective.

This simplification is used during optimization of the func-
tion fMi,s . We used the second approach, because it gives bet-
ter results than the first one.

Experiments
Test Cases

There is a set of test cases attached to the definition of the
problem (Frank, 2012), but its size and difficulty is insuffi-
cient for testing of the algorithm and parameter tuning (our
method solved all of them optimally and no turning was
necessary in the optimal schedules). Due to confidentiality
it was not possible to obtain real data, so we generated a
dataset by replacing tables of the most difficult original test
case from (Frank, 2012) with newly generated tables. The
original test case contains four configurations in total dura-
tion seven hours. We created 100 test cases which are more
difficult to solve than the original test cases. Tables were
generated as follows:

1. Start with a green table.

2. Add a yellow region with probability 1
4 to the table. The

yellow region is a horizontal stripe, a vertical stripe, or a
rectangle. Its dimensions are taken randomly from inter-
val [120; 300] with uniform probability.

3. Add a red region with probability 2
3 to the yellow region.

The red region has the same shape as its parental yellow
region and yellow margin is at least 30px wide.

The planning horizon is only seven hours long in contrast
to the four-week real planning horizon. However, data col-
lected from ISS Live!1 during one month showed that short
problematic periods (a few hours) are interspersed with a
several-days long periods when all joints are in the mode
Autotrack. So in fact, it is necessary to generate plans only
for short periods, because joints are in the mode Autotrack
in the rest of the time. Figure 7 shows one case where some
joints aren’t in the mode Autotrack.

1http://spacestationlive.nasa.gov/

Parameter Tuning
Our algorithm contains two parameters that need to be
tuned. The first one is the labeling strategy used in the search
algorithm and the second one is the value of the time out.

We use SICStus Prolog and its CLPFD library (Carlsson
et al., 1997) for implementation of the solar array planing
model, so we exploited its variable ordering heuristics (left-
most, ff, ffc, min, max) and branching schemes (step, bi-
sect) too. It might be appropriate to develop heuristics spe-
cialized for the problem of solar array planning, but general
heuristics were able to optimize all original test cases. We
do not use all combinations of variable ordering heuristics
and branching schemes, because that is time consuming; we
selected only a few pairs with the best results in initial exper-
iments. We use two pairs during optimization of fCi,s (namely
(max,step) and (ff,bisect)) and fMi,s (namely (ffc,bisect) and
(leftmost,bisect)), one pair (min,bisect) during optimization
of fDi,s, and two pairs (leftmost,bisect) and (min,bisect) dur-
ing optimization of fLi,s.

As time outs were chosen 80ms for optimizing each of
fCi,s and fMi,s , 160ms for optimization of fDi,s, and 800ms
for optimization of fLi,s. These values were chosen based
on the experiments. The timeout is applied to every above-
mentioned combination of heuristics.

Results
We compare the proposed algorithm “Final” with some al-
ternative approaches. The results are summarized in Table 1.
All optimization algorithms were implemented in C# with
.NET Framework 4 and they use the CLPFD library from
SICStus Prolog for labeling of variables. All algorithms
except of “Greedy” use the same time outs (see above),
“Greedy” does not use time outs. Testing was performed
on the laptop with an Intel® Core™ i5-520M processor
(2.40GHz) and 8GB PC3-8500 DDR3 SDRAM.

First we compare the “Final” algorithm with a varia-
tion “Wider” that uses a full portfolio of variable ordering
heuristics and branching schemes provided by the CLPFD
library (five variable ordering heuristics and three branch-
ing schemes) to show that we chose an appropriate subset of
available heuristics. The “Final” algorithm is only 1% worse
in the score of fMi,s , so there is only little space for improve-
ment. The difference in fLi,s is more significant; the “Wider”
is about 12% better, but the “Wider” is still not able to op-
timize 14 plans, i.e., it finds only five more optimal plans.
Moreover, each expansion of the portfolio of heuristics of
the “Final” will have a negative effect on the runtime.

“Perpendicular” is the algorithm that optimizes plans in
configurations, i.e., all objective functions of one configura-
tion are optimized before any objective function of another
configuration is optimized – the order of objective functions
is (fC0,s, fM0,s, fD0,s, fL0,s, fC1,s, fM1,s, . . . , fDn−1,s, fLn−1,s) – so
it is more similar to left-to-right scheduling of the SACE
approach, but it isn’t a greedy algorithm. It has about 41%
better score than “Final” in the least important part of the
objective function at the expense of the most important part
of the objective function, where it has about 111% worse
score. So these plans put more strain on solar arrays.
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Method Time Number of time outs Average value in final plans
[s] fCi,s fMi,s fDi,s fLi,s fCi,s fMi,s fDi,s fLi,s

Final 1075 0 10 7 19 1.02 3.24 0.01 36.61
Wider 19758 0 2 8 14 1.02 3.19 0.01 32.19
Perpendicular 1369 8 5 1 7 2.15 3.21 0.01 21.57
Greedy 725 0 0 0 0 1.71 3.68 0.00 87.24

Table 1: Comparison of different approaches. Time is the total time in seconds to solve all 100 scenarios. Number of time
outs is the number of plans out of 100 that a given approach does not consider as optimal because of insufficient time for the
optimization. The greedy algorithm can claim a suboptimal solution as the optimal solution, because this algorithm can cut the
branch with the optimal solution off at some stage of search. The average value in final plans shows the average value of the
corresponding part of the objective function across all scenarios (all functions are minimized). Scores of colors fCi,s are from
domain [0; 92], scores of modes fMi,s are from domain [0; 10], numbers of changes of direction fDi,s are from domain [0; 15]
and duration of turning fLi,s are from domain [0; 3590]. “Final” is the algorithm proposed in this paper. “Wider” is a variation
of “Final” with wider portfolio of variable ordering heuristics and branching schemes. “Perpendicular” is the algorithm that
optimizes objectives in the order f0,s, f1,s, . . . , fn−1,s. “Greedy” is our implementation of the SACE approach.
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Figure 7: Example of real orientations of joints during half
a day (data collected from ISS Life!).

“Greedy” is our implementation of the SACE approach
based on (Reddy et al., 2011), because their implementation
isn’t publicly accessible. The algorithm goes greedily from
left to right and searches the optimal orientation for the cur-
rent configuration according to fixed orientations of all pre-
vious configurations. If the algorithm fails in an attempt to
extend the schedule, it merges the current configuration with
the previous one. Because the algorithm searches the space
of a constant size during the optimization of a single config-
uration, the computational time required for the optimization
of a single configuration is upper bounded and no time outs
are needed. It needs only about 33% less time for optimiza-
tion of all plans, but the average score is significantly worse
in all parts of the objective function except fDi,s. The average
score of fCi,s is about 67% worse, the average score of fMi,s is
about 14% worse and the average score of fLi,s is about 138%
worse. So our approach is able to provide significantly better
plans in a slightly longer time.

Concluding Remarks
This paper presents a constraint-based optimizer for
scheduling solar array operations (COSSA) at the Interna-
tional Space Station. In particular, we proposed a constraint
model with highly complex transition constraints and ob-
jectives and a special layered optimization algorithm ex-

ploiting a portfolio of classical variable ordering heuristics
and branching schemes. We experimentally showed that this
approach generates much better schedules than the classi-
cal left-to-right scheduling while keeping similar time effi-
ciency. Though this global optimization approach does not
scale yet to a full four-week horizon, based on data col-
lected from ISS, the periods, when something happens and
scheduling is complex, are short enough to be covered by our
optimizer. The major contribution is showing that off-the-
shelf technology with some specialized optimization pro-
cedure overcomes a specialized solver in terms of schedule
quality while keeping time efficiency comparable. Full tech-
nical details are available in (Jelı́nek, 2014).
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